High Frequency Guided Wave Propagation and Scattering in Silicon Wafers

Author(s):  
Jean-Luc Robyr ◽  
Mathieu Simon ◽  
Bernard Masserey ◽  
Paul Fromme

Abstract Thin monocrystalline silicon wafers are employed for the manufacture of solar cells with high conversion efficiency. Micro-cracks can be induced by the wafer cutting process, leading to breakage of the fragile wafers. High frequency guided waves allow for the monitoring of wafers and detection and characterization of surface defects. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the guided wave mode and propagation direction relative to the crystal orientation. Selective excitation of the first anti-symmetric A0 wave mode at 5 MHz center frequency was achieved experimentally using a custom-made wedge transducer. Strong wave pulses with limited beam skewing and widening were measured using non-contact laser interferometer measurements. This allowed the accurate characterization of the Lamb wave propagation and scattering at small artificial surface defects with a size of less than 100 µm. The surface extent of the defects of varying size was characterized using an optical microscope. The scattered guided wave field was evaluated, and characteristic parameters extracted and correlated to the defect size, allowing in principle detection of small defects. Further investigations are required to explain the systematic asymmetry of the guided wave field in the vicinity of the indents.

2017 ◽  
Author(s):  
Marco Pizzolato ◽  
Bernard Masserey ◽  
Jean-Luc Robyr ◽  
Paul Fromme

2021 ◽  
Author(s):  
◽  
Andrew Paul Dawson

<p>The influence of highly regular, anisotropic, microstructured materials on high frequency ultrasonic wave propagation was investigated in this work. Microstructure, often only treated as a source of scattering, significantly influences high frequency ultrasonic waves, resulting in unexpected guided wave modes. Tissues, such as skin or muscle, are treated as homogeneous by current medical ultrasound systems, but actually consist of highly anisotropic micron-sized fibres. As these systems increase towards 100 MHz, these fibres will significantly influence propagating waves leading to guided wave modes. The effect of these modes on image quality must be considered. However, before studies can be undertaken on fibrous tissues, wave propagation in more ideal structures must be first understood. After the construction of a suitable high frequency ultrasound experimental system, finite element modelling and experimental characterisation of high frequency (20-200 MHz) ultrasonic waves in ideal, collinear, nanostructured alumina was carried out. These results revealed interesting waveguiding phenomena, and also identified the potential and significant advantages of using a microstructured material as an alternative acoustic matching layer in ultrasonic transducer design. Tailorable acoustic impedances were achieved from 4-17 MRayl, covering the impedance range of 7-12 MRayl most commonly required by transducer matching layers. Attenuation coefficients as low as 3.5 dBmm-1 were measured at 100 MHz, which is excellent when compared with 500 dBmm-1 that was measured for a state of the art loaded epoxy matching layer at the same frequency. Reception of ultrasound without the restriction of critical angles was also achieved, and no dispersion was observed in these structures (unlike current matching layers) until at least 200 MHz. In addition, to make a significant step forward towards high frequency tissue characterisation, novel microstructured poly(vinyl alcohol) tissue-mimicking phantoms were also developed. These phantoms possessed acoustic and microstructural properties representative of fibrous tissues, much more realistic than currently used homogeneous phantoms. The attenuation coefficient measured along the direction of PVA alignment in an example phantom was 8 dBmm-1 at 30 MHz, in excellent agreement with healthy human myocardium. This method will allow the fabrication of more realistic and repeatable phantoms for future high frequency tissue characterisation studies.</p>


2012 ◽  
Vol 629 ◽  
pp. 570-575
Author(s):  
Xiao Yu Wang ◽  
Yan Yan Yang ◽  
Dao Shun Wang

Ultrasonic guided wave detection technology has mangy special characteristics. It can spread very far along the components in the distance and it can throughout the whole thickness of components, so we can make use of ultrasonic guided wave to test component of internal and surface defects. The rotating shafts are the organizations widely used in the modern production but they are very easy to be dangerous faults. If we can realize the rotating shaft in time, it can reduce the danger. It is significant to design an affordable generator which produces signals to drive magnetostrictive probe that produces ultrasonic guided wave. In this paper, we choose the torsional wave as example to design signal generator. We will introduce the way to select the appropriate guided wave mode and frequency of excitation. Design signal generator with ATmega32, AD9851 and DAC0832.


2019 ◽  
Author(s):  
Bernard Masserey ◽  
Mathieu Simon ◽  
Jean-Luc Robyr ◽  
Paul Fromme

2014 ◽  
Vol 56 ◽  
pp. 553-566 ◽  
Author(s):  
Seyed Mohammad Hossein Hosseini ◽  
Christian Willberg ◽  
Abdolreza Kharaghani ◽  
Ulrich Gabbert

Sign in / Sign up

Export Citation Format

Share Document