scholarly journals Effects of accelerated aging cycles on resin cement-glass ceramic bond strength

2021 ◽  
Vol 11 (2) ◽  
pp. 121-128
Author(s):  
Murat Eskitaşçıoğlu ◽  
Rabia Bozbay ◽  
Beyza Ünalan Değirmenci

Aim: A successful restoration is the result of the proper adhesion between dental tissue, cement and restoration material. The long-term durability of this bond is mandatory for clinical success. The aim of the present study is to investigate the influences of three different thermal cycle applications on resin cement-glass ceramic shear bond strength. Methodology: In the present study, a single CAD/CAM glass ceramic block and five different resin cements (Panavia V5, RelyX U200, G-CEM LinkForce, RelyX Veneer,and Variolink Esthetic) were used. A total of 240 sections 2 mm in thickness were obtained under water cooling in a precision cutting machine with the aid of a diamond saw. Cementation of glass ceramic samples was conducted in accordance with the instructions of the manufacturer, and the cemented samples were incubated at 37 °C for 24 hours. Afterwards, samples were randomly divided into four groups according to thermal cycle: control group, 1750, 3500 and 7000 cycles (n = 12). Following aging procedures, the samples were tested for shear bond. Statistical analyses were done by using the IBM SPSS 20.0 program. While the ANOVA test was used for intra-group statistical analyses, LSD multi-comparison analysis was used for detection of the inter-group differences. Statistical significance was set at p < 0.05. Results: Although an overall reduction was seen in shear bond of all cement groups following thermal cycle applications, this reduction was found to be statistically significant for Panavia V5, RelyX Veneer and Variolink Esthetic (p<0.05). Following 1750 cycles of thermal cycle application, Panavia V5 and G-Cem LinkForce with dual-cure property showed higher shear bond strength than RelyX Veneer and Variolink Esthetic with light-cure structure (p<0.05). Conclusion: The reduction in bond strength following the thermal cycle procedure is associated with water absorption in the resin cement-glass ceramic interface. So resin cement preferred for cementation of restorations is among the key parameters for clinical success.   How to cite this article: Eskitaşçıoğlu M, Bozbay R, Ünalan Değirmenci B. Effects of accelerated aging cycles on resin cement-glass ceramic bond strength. Int Dent Res 2021;11(2):121-8. https://doi.org/10.5577/intdentres.2021.vol11.no2.10   Linguistic Revision: The English in this manuscript has been checked by at least two professional editors, both native speakers of English.

Author(s):  
Siripan Simasetha ◽  
Awiruth Klaisiri ◽  
Tool Sriamporn ◽  
Kraisorn Sappayatosok ◽  
Niyom Thamrongananskul

Abstract Objective The study aimed to evaluate the shear bond strength (SBS) of lithium disilicate glass-ceramic (LDGC) and resin cement (RC) using different surface treatments. Materials and Methods LDGC blocks (Vintage LD Press) were prepared, etched with 4.5% hydrofluoric acid, and randomly divided into seven groups (n = 10), depending on the surface treatments. The groups were divided as follows: 1) no surface treatment (control), 2) Silane Primer (KS), 3) Signum Ceramic Bond I (SGI), 4) Signum Ceramic Bond I/Signum Ceramic Bond II (SGI/SGII), 5) experimental silane (EXP), 6) experimental silane/Signum Ceramic Bond II (EXP/SGII), and 7) Experimental/Adper Scotchbond Multi-purpose Adhesive (EXP/ADP). The specimens were cemented to resin composite blocks with resin cement and stored in water at 37 °C for 24 hours. The specimens underwent 5,000 thermal cycles and were subjected to the SBS test. Mode of failure was evaluated under the stereo microscope. Statistical Analysis Data were analyzed with Welch ANOVA and Games-Howell post hoc tests (α = 0.05). Results The highest mean SBS showed in group EXP/ADP (45.49 ± 3.37 MPa); however, this was not significantly different from group EXP/SGII (41.38 ± 2.17 MPa) (p ≥ 0.05). The lowest SBS was shown in the control group (18.36 ± 0.69 MPa). This was not significantly different from group KS (20.17 ± 1.10 MPa) (p ≥ 0.05). Conclusions The different surface treatments significantly affected the SBS value between LDGC and RC. The application of pure silane coupling agent with or without the application of an adhesive improved the SBS value and bond quality.


2018 ◽  
Vol 12 (01) ◽  
pp. 003-006 ◽  
Author(s):  
Adilson Yoshio Furuse ◽  
Cassiana Koch Scotti ◽  
Alfredo Llerena-Icochea ◽  
Juliana Fraga Soares Bombonatti ◽  
Gisele Aihara Haragushiku ◽  
...  

ABSTRACT Objective This study aims to evaluate the influence of the light activation of simplified adhesives on the shear bond strength of resin cements to a glass-ceramic. Three factors were evaluated: (1) cement in two levels (light cured and dual cured); (2) adhesive in two levels (Single Bond 2 and Single Bond Universal), and (3) light activation in two levels (yes or no). Materials and Methods Thirty-two 1-mm thick slices of a leucite-reinforced glass-ceramic (IPS Empress CAD) were divided into eight groups according to adhesive (Single Bond 2 or Single Bond Universal), cement (AllCem Veneer or AllCem), and light activation of the adhesive before application of the cement (yes or no). Ceramic surfaces were etched for 60 s with 5% hydrofluoric acid, and adhesives were applied. Four cement cylinders were made over each ceramic slice (n = 16) and then submitted to shear bond strength tests. Statistical Analysis Data were analyzed with three-way ANOVA and Tukey (⍺ = 0.05). Results: There were significant differences between adhesives (P < 0.0001) and no differences between cements (P = 0.0763) and light activation (P = 0.4385). No interaction effect occurred (P = 0.05). Single Bond 2 showed higher bond strength than Single Bond Universal. Conclusions: The light activation of the adhesive before the application of the resin cement did not influence the bond strength.


2021 ◽  
Vol 24 (3) ◽  
Author(s):  
Amr El-Etreby ◽  
Osama AlShanti ◽  
Gihan El-Nagar

Objective: The present study aimed to evaluate the effect of repressing and different surface treatment protocols on the shear bond strength of lithium disilicate glass-ceramics. Material and Methods: A total of 52 lithium disilicate glass-ceramic discs (IPS emax Press, Ivoclar Vivadent) were fabricated using the heat-press technique. The discs were divided into two groups; group (P): discs fabricated from new e.max ingots (n=26), group (R): discs fabricated from reused e.max buttons (n=26). Each group was subdivided into subgroup (E): discs were etched with hydrofluoric acid (9.5%) (n=13), subgroup (S): discs were air-abraded with 110 µm alumina particles. All specimens were subjected to X-ray Diffraction analysis, Scanning Electron Microscope, Energy Dispersive X-Ray, Thermo-Cycling, and Shear Bond Strength Testing. Results: Repressed Etched subgroup (RE) recorded the statistically highest shear bond strength value, followed by the Pressed Etched subgroup (PE), while the statistically lowest shear bond strength value was recorded for the Pressed Air-Abraded subgroup (PS) and Repressed Air-Abraded subgroup (RS). Conclusion: Repressing the leftover buttons for the construction of new lithium disilicate glass-ceramic restorations has no adverse effect on the bond strength of the resin cement to the ceramic. Hydrofluoric acid surface treatment improves the shear bond strength and durability of resin cement bond to both pressed and repressed lithium disilicate glass-ceramic. Air-abrasion cannot be considered as a reliable surface treatment when bonding to lithium disilicate glass-ceramics. Keywords Heat pressed; Lithium disilicate glass-ceramics; Repressing; Shear bond strength; Surface treatment.


2015 ◽  
Vol 26 (5) ◽  
pp. 474-477 ◽  
Author(s):  
Samantha Schaffer Pugsley Baratto ◽  
Denis Roberto Falcão Spina ◽  
Carla Castiglia Gonzaga ◽  
Leonardo Fernandes da Cunha ◽  
Adilson Yoshio Furuse ◽  
...  

Abstract: The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the manufacturer's instructions; HA - dried with hot air; NWA - washed and dried with water and air at room temperature; HWA - washed and dried with hot water and hot air. Thereafter, adhesive was applied and light-cured for 20 s. Silicon molds were used to prepare resin cement cylinders (1x1 mm) on the ceramic surface. The specimens were stored in deionized water at 37 °C for 48 h and subjected to a micro-shear test. The data were submitted to statistical analysis (?#61537;=0.05). Group G1 showed higher bond strengths than G2, except for the CTL and NWA subgroups. Differences as function of the silanization protocol were only observed in G1: HWA (25.13±6.83)≥HA (22.95±7.78)≥CTL(17.44±7.24) ≥NWA(14.63±8.76). For G2 there was no difference among the subgroups. In conclusion, the silanization protocol affected the resin cement/ceramic bond strengths, depending on the material. Washing/drying with hot water and/or hot air increased only the bond strength of the dual-cured resin cement.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Zohreh Moradi ◽  
Farnoosh Akbari ◽  
Sara Valizadeh

Aim. This study aimed to assess shear bond strength (SBS) of resin cement to zirconia ceramic with different surface treatments by using Single Bond Universal. Methods. In this in vitro study, 50 zirconia discs (2 × 6 mm) were divided into 5 groups of (I) sandblasting with silica-coated alumina (CoJet)  + silane + Single Bond 2, (II) sandblasting with CoJet + Single Bond Universal, (III) sandblasting with alumina + Single Bond Universal, (IV) sandblasting with alumina + Z-Prime Plus, and (V) Single Bond Universal with no surface treatment. Resin cement was applied in plastic tubes (3 × 5 mm2), and after 10,000 thermal cycles, the SBS was measured by a universal testing machine. The mode of failure was determined under a stereomicroscope at × 40 magnification. Data were analyzed using one-way ANOVA. Results. The maximum (6.56 ± 4.29 MPa) and minimum (1.94 ± 1.96 MPa) SBS values were noted in groups III and I, respectively. Group III had the highest frequency of mixed failure (60%). Group V had the maximum frequency of adhesive failure (100%). Conclusion. Single Bond Universal + sandblasting with alumina or silica-coated alumina particles is an acceptable method to provide a strong SBS between resin cement and zirconia.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Amjad Abu Hasna ◽  
Stephanie Semmelmann ◽  
Fernanda Alves Feitosa ◽  
Danilo De Souza Andrade ◽  
Franklin R Tay ◽  
...  

This study evaluated the effect of different surface treatments on the tensile bond strength between lithium disilicate glass-ceramics, resin cement, and dentin. Fifty truncated cone-shape glass-ceramics were divided into five groups (n = 10): G1, control: 10% hydrofluoric acid (HF); G2, Nd:YAG laser + silane; G3, Sil + Nd:YAG laser; G4, graphite + Nd:YAG laser + Sil; and G5, graphite + Sil + Nd:YAG laser. Fifty human third-molars were cut to cylindrical shape and polished to standardize the bonding surfaces. The glass-ceramic specimens were bonded to dentin with a dual-cured resin cement and stored in distilled water for 24 h at 37ºC. Tensile testing was performed on a universal testing machine (10 Kgf load cell at 1 mm/min) until failure. The bond strength values (mean ± SD) in MPa were G1 (9.4 ± 2.3), G2 (9.7 ± 2.0), G3 (6.7 ± 1.9), G4 (4.6 ± 1.1), and G5 (1.2 ± 0.3). Nd:YAG laser and HF improve the bond strength between lithium disilicate glass-ceramics, resin cement, and dentin. The application of a graphite layer prior to Nd:YAG laser irradiation negatively affects this bonding and presented inferior results.


2015 ◽  
Vol 34 (3) ◽  
pp. 302-309 ◽  
Author(s):  
Kamolporn WATTANASIRMKIT ◽  
Viritpon SRIMANEEPONG ◽  
Kanchana KANCHANATAWEWAT ◽  
Naruporn MONMATURAPOJ ◽  
Pasutha THUNYAKITPISAL ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document