scholarly journals Reduction of diagnostic and treatment delays reduces rifampicin-resistant tuberculosis mortality in Rwanda

2020 ◽  
Vol 24 (3) ◽  
pp. 329-339 ◽  
Author(s):  
J-C. S. Ngabonziza ◽  
Y. M. Habimana ◽  
T. Decroo ◽  
P. Migambi ◽  
A. Dushime ◽  
...  

SETTING: In 2005, in response to the increasing prevalence of rifampicin-resistant tuberculosis (RR-TB) and poor treatment outcomes, Rwanda initiated the programmatic management of RR-TB, including expanded access to systematic rifampicin drug susceptibility testing (DST) and standardised treatment.OBJECTIVE: To describe trends in diagnostic and treatment delays and estimate their effect on RR-TB mortality.DESIGN: Retrospective analysis of individual-level data including 748 (85.4%) of 876 patients diagnosed with RR-TB notified to the World Health Organization between 1 July 2005 and 31 December 2016 in Rwanda. Logistic regression was used to estimate the effect of diagnostic and therapeutic delays on RR-TB mortality.RESULTS: Between 2006 and 2016, the median diagnostic delay significantly decreased from 88 days to 1 day, and the therapeutic delay from 76 days to 3 days. Simultaneously, RR-TB mortality significantly decreased from 30.8% in 2006 to 6.9% in 2016. Total delay in starting multidrug-resistant TB (MDR-TB) treatment of more than 100 days was associated with more than two-fold higher odds for dying. When delays were long, empirical RR-TB treatment initiation was associated with a lower mortality.CONCLUSION: The reduction of diagnostic and treatment delays reduced RR-TB mortality. We anticipate that universal testing for RR-TB, short diagnostic and therapeutic delays and effective standardised MDR-TB treatment will further decrease RR-TB mortality in Rwanda.

2020 ◽  
Vol 24 (5) ◽  
pp. 485-491
Author(s):  
D. Butov ◽  
C. Lange ◽  
J. Heyckendorf ◽  
I. Kalmykova ◽  
T. Butova ◽  
...  

OBJECTIVE: To document the level of drug resistance in MDR-TB patients and to characterize management capacities for their medical care and MDR-TB treatment outcomes in the Kharkiv region of Ukraine. This area has one of the highest frequencies of MDR-TB worldwide.METHODS: A retrospective observational cohort study was performed on registry data from the regional anti-TB dispensary in Kharkiv. All microbiologically confirmed MDR-TB patients registered in 2014 were included. Diagnostic, treatment and post-treatment follow-up data were analysed.RESULTS: Of 169 patients with MDR-TB, 55.0% had pre-extensively drug-resistant (pre-XDR) or XDR resistant patterns. Rapid molecular diagnosis by GeneXpert and liquid M. tuberculosis cultures were only available for 66.9% and 56.8% of patients, respectively. Phenotypic drug-susceptibility testing (DST) for high priority TB drugs (bedaquiline, linezolid, clofazimine) were not available. DST for later generation fluroquinolones was available only in 53.2% of patients. 50.9% of patients had less than 4 drugs in the treatment regimen proven to be effective by DST. More than 23.1% of patients with MDR-TB failed their treatment and only 45.0% achieved a cure.CONCLUSION: The high prevalence of MDR-TB and poor MDR-TB treatment outcomes in the Kharkiv region, is associated with substantial shortages in rapid molecular and phenotypic DST, a lack of high priority MDR-TB drugs, poor treatment monitoring and follow-up capacities.


2021 ◽  
Author(s):  
◽  
Alexander S Lachapelle

Rapid and up-to-date drug susceptibility testing is urgently needed to address the threat of multidrug resistant tuberculosis. We developed a composite machine learning system to predict susceptibility from whole-genome sequences for 13 anti-tuberculosis drugs. We trained, validated and externally tested the system, and assessed its performance against a previously validated mutation catalogue, existing molecular assays, and World Health Organization Target Product Profiles. 174,492 phenotypes and 26,328 isolates from 15 countries were studied. The sensitivity of the model was greater than 90% for all drugs except ethionamide, clofazimine and linezolid. Specificity was greater than 95% for all drugs except ethambutol, ethionamide, and bedaquiline, delamanid and clofazimine. The machine learning system was more sensitive than the catalogue and assay (all p<0.01), and correctly predicted a pan-susceptible regimen with 98% accuracy in MDR-TB samples. The proposed system can help guide therapy and be updated automatically as new resistance emerges.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yong Chen ◽  
Zhengan Yuan ◽  
Xin Shen ◽  
Jie Wu ◽  
Zheyuan Wu ◽  
...  

Introduction. Second-line antituberculosis drugs (SLDs) are used for treating multidrug-resistant tuberculosis (MDR-TB). Prolonged delays before confirming MDR-TB with drug susceptibility testing (DST) could result in transmission of drug-resistant strains and inappropriate use of SLDs, thereby increasing the risk of resistance to SLDs. This study investigated the diagnostic delay in DST and prevalence of baseline SLD resistance in Shanghai and described the distribution of SLD resistance with varied delays to DST.Methods. All registered patients from 2011 to 2013 in Shanghai were enrolled. Susceptibility to ofloxacin, amikacin, kanamycin, and capreomycin was tested. Total delay in DST completion was measured from the onset of symptoms to reporting DST results.Results. Resistance to SLDs was tested in 217 of the 276 MDR-TB strains, with 118 (54.4%) being resistant to at least one of the four SLDs. The median total delay in DST was 136 days. Patients with delay longer than median days were roughly twice more likely to have resistance to at least one SLD (OR 2.22, 95% CI 1.19–4.11).Conclusions. During prolonged delay in DST, primary and acquired resistance to SLDs might occur more frequently. Rapid diagnosis of MDR-TB, improved nosocomial infection controls, and regulated treatment are imperative to prevent SLD resistance.


2019 ◽  
Vol 23 (12) ◽  
pp. 1257-1262 ◽  
Author(s):  
R. J. Chandak ◽  
B. Malhotra ◽  
S. Bhargava ◽  
S. K. Goel ◽  
D. Verma ◽  
...  

SETTING: Patients with presumed multidrug-resistant tuberculosis (MDR-TB) and undergoing MDR-TB treatment from Rajasthan, India.OBJECTIVE: To compare the GenoType® MTBDRsl v.1.0 (MTBDRsl) assay capacity to detect resistance to ofloxacin, amikacin, capreomycin, kanamycin and ethambutol in Mycobacterium tuberculosis with phenotypic drug susceptibility testing (DST) using MGIT™960™ in sputum samples and isolates.DESIGN: Fifty-three smear-positive sputum samples were tested directly by MTBDRsl and 205 MDR-TB isolates were processed using MTBDRsl and DST for five drugs on MGIT960. DNA sequencing was performed in isolates with discordance in the results between the two methods for the gyrA, gyrB and rrs genes.RESULT: Sensitivity and specificity of MTBDRsl was found to be respectively 93.1% and 100% for fluoroquinoline, respectively 75–78% and 100% for aminoglycosides/cyclopeptides, respectively 70% and 92% for ethambutol and respectively 92.3% and 100% for extensively drug-resistant (XDR) TB detection. On sequencing eight discordant isolates for quinolones, mutations were seen in 12.5% of the gyrB gene and among 20 discordant isolates for aminoglycosides/cyclopeptides in the rrs gene in 15% isolates. The turnaround time was 2 days for MTBDRsl vs. 10 days for MGIT960.CONCLUSIONS: MTBDRsl can be used as an initial rapid test for detecting XDR-TB, resistance to quinolones and aminogycosides/cyclopeptides in smear-positive sputum samples.


2010 ◽  
Vol 15 (11) ◽  
Author(s):  
I Devaux ◽  
D Manissero ◽  
K Fernandez de la Hoz ◽  
K Kremer ◽  
D van Soolingen ◽  
...  

This paper describes the results of second-line drug (SLD) susceptibility tests among multidrug-resistant tuberculosis (MDR TB) cases reported in 20 European countries aiming to identify extensively drug-resistant tuberculosis (XDR TB) cases. A project on molecular surveillance of MDR TB cases was conducted by EuroTB and the National Institute for Public Health and the Environment (RIVM) from 2005 to 2007. Information on drug susceptibility testing (DST) was provided to this project and case-based data on MDR TB cases were reported on a quarterly basis by 20 countries of the World Health Organization’s European Region, including 15 European Union Member States. Data included SLD susceptibility test results, enabling a retrospective description of XDR TB cases notified between 2003 and 2007 .In 18 countries DST was performed for two or more of the SLD included in the XDR TB definition. The proportion of MDR TB isolates tested for SLD varied widely between countries (range 20 to 100 percent). In the 18 countries, 149 (10%) XDR TB cases were reported among MDR TB cases with available DST results for SLD. Sixteen additional MDR TB cases were reported by the MDR TB surveillance system when compared with the number of routinely reported MDR TB cases to EuroTB in ten countries with representative data reported during three consecutive years (2003-2005). To counter the threat of XDR TB in Europe, a standardised approach to XDR TB surveillance and DST for SLD is needed, as well as increased laboratory capacity across European countries.


2019 ◽  
Vol 23 (10) ◽  
pp. 1050-1054
Author(s):  
L. Guglielmetti ◽  
J. Jaffré ◽  
C. Bernard ◽  
F. Brossier ◽  
N. El Helali ◽  
...  

SETTING: The World Health Organization (WHO) recommends that multidrug-resistant tuberculosis (MDR-TB) treatment should be managed in collaboration with multidisciplinary advisory committees (consilia). A formal national Consilium has been established in France since 2005 to provide a centralised advisory service for clinicians managing MDR-TB and extensively drug-resistant (XDR-TB) cases.OBJECTIVE: Review the activity of the French TB Consilium since its establishment.DESIGN: Retrospective description and analysis of the activity of the French TB Consilium.RESULTS: Between 2005 and 2016, 786 TB cases or contacts of TB cases were presented at the French TB Consilium, including respectively 42% and 79% of all the MDR-TB and XDR-TB cases notified in France during this period. Treatment regimens including bedaquiline and/or delamanid were recommended for 42% of the cases presented at the French TB Consilium since 2009. Patients were more likely to be presented at the French TB Consilium if they were born in the WHO Europe Region, had XDR-TB, were diagnosed in the Paris region, or had resistance to additional drugs than those defining XDR-TB.CONCLUSION: The French TB Consilium helped supervise appropriate management of MDR/XDR-TB cases and facilitated implementation of new drugs for MDR/XDR-TB treatment.


2020 ◽  
Vol 51 (6) ◽  
pp. 606-613
Author(s):  
Ye-Cheng Zhou ◽  
Shu-Mei He ◽  
Zi-Lu Wen ◽  
Jun-Wei Zhao ◽  
Yan-Zheng Song ◽  
...  

Abstract Rapid and accurate diagnosis of multidrug-resistant tuberculosis (MDR-TB) is important for timely and appropriate therapy. In this study, a rapid and easy-to-perform molecular test that integrated polymerase chain reaction (PCR) amplification and a specific 96-well microplate hybridization assay, called PCR-ELISA (enzyme-linked immunosorbent assay), were developed for detection of mutations in rpoB, katG, and inhA genes responsible for rifampin (RIF) and isoniazid (INH) resistance and prediction of drug susceptibility in Mycobacterium tuberculosis clinical isolates. We evaluated the utility of this method by using 32 multidrug-resistent (MDR) isolates and 22 susceptible isolates; subsequently, we compared the results with data obtained by conventional drug susceptibility testing and DNA sequencing. The sensitivity and specificity of the PCR-ELISA test were 93.7% and 100% for detecting RIF resistance, and 87.5% and 100% for detecting INH resistance, respectively. These results were comparable to those yielded by commercially available molecular tests such as the GenoType MTBDRplus assay. Based on the aforementioned results, we conclude that the PCR-ELISA microplate hybridization assay is a rapid, inexpensive, convenient, and reliable test that will be useful for rapid diagnosis of MDR-TB, for improved clinical care.


2010 ◽  
Vol 139 (11) ◽  
pp. 1784-1793 ◽  
Author(s):  
H. LIN ◽  
S. SHIN ◽  
J. A. BLAYA ◽  
Z. ZHANG ◽  
P. CEGIELSKI ◽  
...  

SUMMARYWe examined the spatiotemporal distribution of laboratory-confirmed multidrug-resistant tuberculosis (MDR TB) cases and that of other TB cases in Lima, Peru with the aim of identifying mechanisms responsible for the rise of MDR TB in an urban setting. All incident cases of TB in two districts of Lima, Peru during 2005–2007 were included. The spatiotemporal distributions of MDR cases and other TB cases were compared with Ripley's K statistic. Of 11 711 notified cases, 1187 received drug susceptibility testing and 376 were found to be MDR. Spatial aggregation of patients with confirmed MDR disease appeared similar to that of other patients in 2005 and 2006; however, in 2007, cases with confirmed MDR disease were found to be more tightly grouped. Subgroup analysis suggests the appearance of resistance may be driven by increased transmission. Interventions should aim to reduce the infectious duration for those with drug-resistant disease and improve infection control.


2014 ◽  
Vol 53 (1) ◽  
pp. 131-135 ◽  
Author(s):  
Limei Zhu ◽  
Qiao Liu ◽  
Leonardo Martinez ◽  
Jinyan Shi ◽  
Cheng Chen ◽  
...  

The increasing burden of drug-resistant tuberculosis (TB) poses an escalating threat to national TB control programs. To assist appropriate treatment for TB patients, accurate and rapid detection of drug resistance is critical. The GeneChip test is a novel molecular tool for the diagnosis of TB drug resistance. Performance-related data on GeneChip are limited, and evaluation in new and previously treated TB cases has never been performed. We evaluated the diagnostic performance of GeneChip in detecting resistance to rifampin (RMP) and isoniazid (INH) and in detecting multidrug-resistant tuberculosis (MDR-TB) in comparison with standard drug susceptibility testing (DST) and compared the results in a group of previously treated and newly detected TB patients in an urban area in southeastern China. One thousand one hundred seventy-three (83.8%) new cases and 227 (16.2%) previously treated cases were collected between January 2011 and September 2013. The GeneChip showed a specificity of 97.8% and a sensitivity of 94.8% for detection of RMP resistance and 97.3% and 70.9%, respectively, for INH resistance in new cases. For previously treated cases, the overall sensitivity, specificity, and agreement rate are 94.6%, 91.3%, and 92.1%, respectively, for detection of RMP resistance and 69.7%, 95.4%, and 86.8%, respectively, for INH resistance. The sensitivity and specificity of MDR-TB were 81.8% and 99.0% in new cases and 77.8% and 93.4% in previously treated cases, respectively. The GeneChip system provides a simple, rapid, reliable, and accurate clinical assay for the detection of TB drug resistance, and it is a potentially important diagnostic tool in a high-prevalence area.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Anne-Marie Demers ◽  
◽  
Soyeon Kim ◽  
Sara McCallum ◽  
Kathleen Eisenach ◽  
...  

Abstract Background Drug susceptibility testing (DST) patterns of Mycobacterium tuberculosis (MTB) from patients with rifampicin-resistant tuberculosis (RR-TB) or multidrug-resistant TB (MDR-TB; or resistant to rifampicin and isoniazid (INH)), are important to guide preventive therapy for their household contacts (HHCs). Methods As part of a feasibility study done in preparation for an MDR-TB preventive therapy trial in HHCs, smear, Xpert MTB/RIF, Hain MTBDRplus, culture and DST results of index MDR-TB patients were obtained from routine TB programs. A sputum sample was collected at study entry and evaluated by the same tests. Not all tests were performed on all specimens due to variations in test availability. Results Three hundred eight adults with reported RR/MDR-TB were enrolled from 16 participating sites in 8 countries. Their median age was 36 years, and 36% were HIV-infected. Routine testing on all 308 were confirmed as having RR-TB, but only 75% were documented as having MDR-TB. The majority of those not classified as having MDR-TB were because only rifampicin resistance was tested. At study entry (median 59 days after MDR-TB treatment initiation), 280 participants (91%) were able to produce sputum for the study, of whom 147 (53%) still had detectable MTB. All but 2 of these 147 had rifampicin DST done, with resistance detected in 89%. Almost half (47%) of the 147 specimens had INH DST done, with 83% resistance. Therefore, 20% of the 280 study specimens had MDR-TB confirmed. Overall, DST for second-line drugs were available in only 35% of the 308 routine specimens and 15% of 280 study specimens. Conclusions RR-TB was detected in all routine specimens but only 75% had documented MDR-TB, illustrating the need for expanded DST beyond Xpert MTB/RIF to target preventive therapy for HHC.


Sign in / Sign up

Export Citation Format

Share Document