ASSESSING DIFFERENT WATER QUALITY PARAMETERS IN THE RIVER SAVA USING AIRBORNE HYPERSPECTRAL REMOTE SENSING TECHNIQUES

Author(s):  
Mak Kisevic
Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Qi Cao ◽  
Gongliang Yu ◽  
Shengjie Sun ◽  
Yong Dou ◽  
Hua Li ◽  
...  

The Haihe River is a typical sluice-controlled river in the north of China. The construction and operation of sluice dams change the flow and other hydrological factors of rivers, which have adverse effects on water, making it difficult to study the characteristics of water quality change and water environment control in northern rivers. In recent years, remote sensing has been widely used in water quality monitoring. However, due to the low signal-to-noise ratio (SNR) and the limitation of instrument resolution, satellite remote sensing is still a challenge to inland water quality monitoring. Ground-based hyperspectral remote sensing has a high temporal-spatial resolution and can be simply fixed in the water edge to achieve real-time continuous detection. A combination of hyperspectral remote sensing devices and BP neural networks is used in the current research to invert water quality parameters. The measured values and remote sensing reflectance of eight water quality parameters (chlorophyll-a (Chl-a), phycocyanin (PC), total suspended sediments (TSS), total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH4-N), nitrate-nitrogen (NO3-N), and pH) were modeled and verified. The results show that the performance R2 of the training model is above 80%, and the performance R2 of the verification model is above 70%. In the training model, the highest fitting degree is TN (R2 = 1, RMSE = 0.0012 mg/L), and the lowest fitting degree is PC (R2 = 0.87, RMSE = 0.0011 mg/L). Therefore, the application of hyperspectral remote sensing technology to water quality detection in the Haihe River is a feasible method. The model built in the hyperspectral remote sensing equipment can help decision-makers to easily understand the real-time changes of water quality parameters.


2020 ◽  
Vol 12 (2) ◽  
pp. 336 ◽  
Author(s):  
Yishan Zhang ◽  
Lun Wu ◽  
Huazhong Ren ◽  
Yu Liu ◽  
Yongqian Zheng ◽  
...  

Protection of water environments is an important part of overall environmental protection; hence, many people devote their efforts to monitoring and improving water quality. In this study, a self-adapting selection method of multiple artificial neural networks (ANNs) using hyperspectral remote sensing and ground-measured water quality data is proposed to quantitatively predict water quality parameters, including phosphorus, nitrogen, biochemical oxygen demand (BOD), chemical oxygen demand (COD), and chlorophyll a. Seventy-nine ground measured data samples are used as training data in the establishment of the proposed model, and 30 samples are used as testing data. The proposed method based on traditional ANNs of numerical prediction involves feature selection of bands, self-adapting selection based on multiple selection criteria, stepwise backtracking, and combined weighted correlation. Water quality parameters are estimated with coefficient of determination R 2 ranging from 0.93 (phosphorus) to 0.98 (nitrogen), which is higher than the value (0.7 to 0.8) obtained by traditional ANNs. MPAE (mean percent of absolute error) values ranging from 5% to 11% are used rather than root mean square error to evaluate the predicting precision of the proposed model because the magnitude of each water quality parameter considerably differs, thereby providing reasonable and interpretable results. Compared with other ANNs with backpropagation, this study proposes an auto-adapting method assisted by the above-mentioned methods to select the best model with all settings, such as the number of hidden layers, number of neurons in each hidden layer, choice of optimizer, and activation function. Different settings for ANNS with backpropagation are important to improve precision and compatibility for different data. Furthermore, the proposed method is applied to hyperspectral remote sensing images collected using an unmanned aerial vehicle for monitoring the water quality in the Shiqi River, Zhongshan City, Guangdong Province, China. Obtained results indicate the locations of pollution sources.


2020 ◽  
Author(s):  
Yu Li ◽  
Youyue Sun ◽  
Jinhui Jeanne Huang ◽  
Edward McBean

<p>With the increasingly prominent ecological and environmental problems in lakes, the monitoring water quality in lakes by satellite remote sensing is becoming more and more high demanding. Traditional water quality sampling is normally conducted manually and are time-consuming and labor-costly. It could not provide a full picture of the waterbodies over time due to limited sampling points and low sampling frequency. A novel attempt is proposed to use hyperspectral remote sensing in conjunction with machine learning technologies to retrieve water quality parameters and provide mapping for these parameters in a lake. The retrieval of both optically active parameters: Chlorophyll-a (CHLA) and dissolved oxygen concentration (DO), as well as non-optically active parameters: total phosphorous (TP), total nitrogen (TN), turbidity (TB), pH were studied in this research. A comparison of three machine learning algorithms including Random Forests (RF), Support Vector Regression (SVR) and Artificial Neural Networks were conducted. These water parameters collected by the Environment and Climate Change Canada agency for 20 years were used as the ground truth for model training and validation. Two set of remote sensing data from MODIS and Sentinel-2 were utilized and evaluated. This research proposed a new approach to retrieve both optically active parameters and non-optically active parameters for water body and provide new strategy for water quality monitoring.</p>


2005 ◽  
Author(s):  
Dingtian Yang ◽  
Delu Pan ◽  
Xiaoyu Zhang ◽  
Xiaofeng Zhang ◽  
Xianqiang He ◽  
...  

2020 ◽  
Vol 42 ◽  
pp. e32
Author(s):  
George Colares Silva Filho ◽  
Juliana Martins dos Santos ◽  
Paulo Cesar Mendes Villis ◽  
Ingrid Santos Gonçalves ◽  
Isael Coelho Correia ◽  
...  

Natural or anthropogenic chemical compounds of different origins often accumulate in estuarine regions. These compounds may alter the water quality. Therefore, It is important to constantly monitor the quality of estuarine regions. A combination of remote sensing and traditional sampling can lead to a better monitoring program for water quality parameters. The objective of this work is to assess the spatiotemporal variability of the physicochemical properties of water in the lower region of the Mearim River and estimate water quality parameters via remote sensing. Samples were collected at 16 points, from Baixo Arari to the mouth of the watershed, using a multiparameter meter and Landsat 8 satellite images. The physicochemical parameters of the water had high salinity levels, between 2.30 and 20.10 parts per trillion; a high total dissolved solids content, between 2.77 and 19.70 g/L; and minimum dissolved oxygen values. Estimating the physicochemical properties of the water via remote sensing proved feasible, particularly in the dry season when there is less cloud cover.


Sign in / Sign up

Export Citation Format

Share Document