scholarly journals New potentiometric electrode based on ion pair complex for determination of tropicamide in pure and pharmaceutical formulations

2016 ◽  
Vol 6 (4) ◽  
pp. 277 ◽  
Author(s):  
Mouhammed Khateeb ◽  
Basheer Elias ◽  
Hazar Alksair

<p class="PaperAbstract"><span lang="EN-US">Construction and general performance of a novel modified carbon paste electrode (MCPE) for determination of tropicamide (TPC) in pure form and pharmaceutical formulations have been examined. Tropicamide-tetraphenylborate (TPC–TPB) ion pair has been prepa­red and used as electroactive material. The best MCPE electrode was composed of 7 % ion-pair, 46.5 % dioctylphthalat and 46.5 % graphite powder. The electrode shows stable potentiometric response for TPC in the concentration range 0.3–221.0 µM at 25 °C and pH range of 2.0–8.0. The electrode exhibits near Nernstian slope of 59.71±0.30 mV/decade and lower limit of detection of 0.09 µM with fast response time (less than 15 s). The selectivity of the electrode (TPC–TPB) was investigated with respect to some organic and inorganic cations. The MCPE was designed to have better mechanical resistance. The proposed method was successfully applied for determination of TPC in eye drop formulation.</span></p>

2018 ◽  
Vol 11 (4) ◽  
pp. 99
Author(s):  
Luane Ferreira Garcia ◽  
Carlos Eduardo Peixoto da Cunha ◽  
Emily Kussmaul Gonçalves Moreno ◽  
Douglas Vieira Thomaz ◽  
Germán Sanz Lobón ◽  
...  

Methyldopa is a catecholamine widely used in the treatment of mild to moderate hypertension whose determination in pharmaceutical formulae is of upmost importance for dose precision. Henceforth, a low-cost carbon paste electrode (CPE) consisting of graphite powder obtained from a crushed pencil stick was herein modified with nanostructured TiO2 (TiO2@CPE) aiming for the detection of methyldopa in pharmaceutical samples. The TiO2-modified graphite powder was characterized by scanning electron microscopy and X-ray diffraction, which demonstrated the oxide nanostructured morphology. Results evidenced that sensitivity was nonetheless increased due to electro-catalytic effects promoted by metal modification, and linear response obtained by differential pulse voltammetry for the determination of methyldopa (pH = 5.0) was between 10–180 μmol/L (Limit of Detection = 1 μmol/L) with the TiO2@CPE sensor. Furthermore, the constructed sensor was successfully applied in the detection of methyldopa in pharmaceutical formulations and excipients promoted no interference, that indicates that the sensor herein developed is a cheap, reliable, and useful strategy to detect methyldopa in pharmaceutical samples, and may also be applicable in determinations of similar compounds.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hamid Reza Lotfi Zadeh Zhad ◽  
Forouzan Aboufazeli ◽  
Vahid Amani ◽  
Ezzatollah Najafi ◽  
Omid Sadeghi

A carbon paste electrode was modified by dipyridile amine functionalized multiwalled carbon nanotubes for determination of trace amounts of lead(II) ions. The electrode composition was graphite powder 70%, paraffin 23%, and dipyridile amine modified MWCNTs 7% (W/W). The linear range for lead(II) was 9.5 × 10−8 to 2.5 × 10−3 mol L−1, and the limit of detection was obtained 7.0 × 10−8 mol L−1. The lifetime of the electrode was ten weeks, and a fast response time was observed. The electrode was used for determination of trace amounts of Pb(II) ions in real samples and standard reference materials of water, soil, and plant.


2019 ◽  
Author(s):  
Chem Int

In this study voltammetric behaviour of secnidazole (SCZ) at 1, 4-Benzoquinone Modified Carbon Paste Electrode (1,4-BQMCPE) was investigated in Britton Robinson buffer solution using cyclic voltammetric technique. A well-defined cathodic peak was observed for the SCZ in the entire pH range. The current increases steadily with scan rate and the results indicated that the process is irreversible reduction and adsorption controlled. The number of electrons transferred and different kinetic parameters like transfer coefficient and rate constant were calculated by using cyclic voltammetry technique. Differential pulse voltammetric method has been used for the determination of SCZ content in pharmaceutical tablet. This method enabled to determine SCZ in the concentration range 1.0 × 10-8 to 4.0 × 10-4 M. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 2.13 × 10-9 and 2.85 × 10-9 respectively. The method was applied to determine the content of SCZ in different sample solutions of SCZ tablet with excellent recovery and relative standard deviation results (99.892±1.53 respectively) for spiked standard SCZ in tablet sample solutions. The selectivity of the method for SCZ was further studied in the presence of selected potential interferents such as fluconazole, azithromycin etc and confirmed the potential applicability of the developed method for the determination of SCZ in real pharmaceutical tablets.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
A. B. Teradale ◽  
S. D. Lamani ◽  
B. E. Kumara Swamy ◽  
P. S. Ganesh ◽  
S. N. Das

A polymeric thin film modified electrode, that is, poly(niacinamide) modified carbon paste electrode (MCPE), was developed for the electrochemical determination of catechol (CC) by using cyclic voltammetric technique. Compared to bare carbon paste electrode (BCPE), the poly(niacinamide) MCPE shows good electrocatalytic activity towards the oxidation of catechol in phosphate buffer solution (PBS) of physiological pH 7.4. All experimental parameters were optimized. Poly(niacinamide) modified carbon paste electrode gave a linear response between concentration of CC and its anodic peak current in the range within 20.6–229.0 μM. The limit of detection (3S/M) and limit of quantification (10S/M) were 1.497 μM and 4.99 μM, respectively. From the study of scan rate variation, the electrode process was found to be adsorption-controlled. The involvement of protons and electrons in the oxidation of CC was found to be equal. The probable electropolymerisation mechanism of niacinamide was proposed. Finally, this method can be used in development of a sensor for sensitive determination of CC.


2016 ◽  
Vol 11 (2) ◽  
pp. 175
Author(s):  
Irdhawati Irdhawati ◽  
Manuntun Manurung ◽  
Anisha Maulinasari

In this research, the modified carbon paste electrode with crown ether (dibenzo-18-crown-6) has been prepared, for determination of ascorbic acid. Some of parameters observed were optimization of crown ether composition in carbon paste, pH of solution, linear concentration range, limit of detection, reproducibility, and recovery. The optimum performance of the prepared electrode was applied for determination of commercialsampleswhich contain of ascorbic acid. The result of this research showsthat the optimum composition of crown ether in carbon paste is 0.6 % at pH 4. Linear range of concentration obtained is from 2 - 200 μM. The detection limit and percentage of recovery are 1.243 μM and 101.31 %, respectively. The modified electrode has HorRat value less than 2, it indicates a good reproducibility. Analysis of 4 commercial samples which contain of ascorbic acid were in agreement with the content listed in the label with the suitability of 94 - 100 %.


2016 ◽  
Vol 11 (2) ◽  
pp. 175
Author(s):  
Irdhawati Irdhawati ◽  
Manuntun Manurung ◽  
Anisha Maulinasari

In this research, the modified carbon paste electrode with crown ether (dibenzo-18-crown-6) has been prepared, for determination of ascorbic acid. Some of parameters observed were optimization of crown ether composition in carbon paste, pH of solution, linear concentration range, limit of detection, reproducibility, and recovery. The optimum performance of the prepared electrode was applied for determination of commercialsampleswhich contain of ascorbic acid. The result of this research showsthat the optimum composition of crown ether in carbon paste is 0.6 % at pH 4. Linear range of concentration obtained is from 2 - 200 μM. The detection limit and percentage of recovery are 1.243 μM and 101.31 %, respectively. The modified electrode has HorRat value less than 2, it indicates a good reproducibility. Analysis of 4 commercial samples which contain of ascorbic acid were in agreement with the content listed in the label with the suitability of 94 - 100 %.


2015 ◽  
Vol 22 (3) ◽  
pp. 451-458
Author(s):  
Vít Novotný ◽  
Jiří Barek

Abstract A method for the determination of aclonifen at a carbon paste electrode modified with tricresyl phosphate has been developed. The optimum electrochemical regime proved to be differential pulse voltammetry (DPV) in the negative potential range from −200 to −1600 mV. The optimum pH for the determination proved to be pH = 8. The calibration dependence is linear and the limit of detection achieved for the method was 2·10−6 mol/dm3. The method is fast, reliable and it is suitable for the detection of aclonifen in the concentration range from 2·10−6 to 1·10−4 mol/dm3.


Sign in / Sign up

Export Citation Format

Share Document