Operation of an induction motor supplied by voltage with interharmonics

2018 ◽  
Vol 2 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Tomasz Drabek

The paper discusses the effects of interharmonics, i.e. frequencies higher than the fundamental frequency, not being its total multiplicity, in the voltage supplying the induction motor. The emergence of interharmonics in a three-phase grid is mainly the result of the swinging of peak mains voltages. In induction machines, this results in the occurrence of currents with interharmonic and subharmonic frequencies, the generation of alternating moments, the swinging of the rotor speed and the change in the RMS value of the current of the fundamental frequency. The paper explores these phenomena simulation, taking into account the skin effect of currents in the rotor cage. The research was carried out both for interharmonics with a positive sequence of phases as well as for the negative sequence. The paper is a continuation of work [1].

2017 ◽  
Vol 1 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Tomasz Drabek

The paper discusses the effects of the presence of subharmonics (i.e. frequencies lower than the basic 50 Hz) in the voltage supplying the induction machine. Subharmonics in a three-phase grid are the result of the oscillations of peak values of the voltages. In induction machines, this results in the subharmonic and interharmonic currents, the generation of alternating moments, the increase in the rms value of the current of the fundamental harmonic and the oscillations of the rotor speed. In the paper is derived expression on the thermally acceptable load of the motor (by torque and power), in the case of supplying it by three-phase voltage containing a positive sequence of subharmonics. It presented the obstacles to derive the analogical expression for power supply containing a negative sequence of subharmonics.


Author(s):  
Enrique C. Quispe ◽  
Iván D. López ◽  
Fernando J. T. E. Ferreira ◽  
Vladimir Sousa

<p class="Abstract">This paper presents the results of a study about the effects of unbalanced voltages on the energy performance of three-phase induction motors. The principal contribution of this paper is that presents a detailed analysis of the influence of positive and negative sequence voltage components and the angle between them on several characteristics such as: line currents, losses, efficiency and power factor under different voltage unbalanced conditions. A three-phase induction motor of 3 HP was used as a case study. The results of the investigation show that the positive sequence voltage must be considered together with the voltage unbalance factor (VUF) or percent voltage unbalance (PVU) index to evaluate the performance of the induction motor. It is also shown that the behavior of the motor load influences on the positive sequence parameters next to the voltage, while in the case of negative sequence only influences the negative sequence voltage.</p>


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Gayatridevi Rajamany ◽  
Sekar Srinivasan ◽  
Krishnan Rajamany ◽  
Ramesh K. Natarajan

The intention of fault detection is to detect the fault at the beginning stage and shut off the machine immediately to avoid motor failure due to the large fault current. In this work, an online fault diagnosis of stator interturn fault of a three-phase induction motor based on the concept of symmetrical components is presented. A mathematical model of an induction motor with turn fault is developed to interpret machine performance under fault. A Simulink model of a three-phase induction motor with stator interturn fault is created for extraction of sequence components of current and voltage. The negative sequence current can provide a decisive and rapid monitoring technique to detect stator interturn short circuit fault of the induction motor. The per unit change in negative sequence current with positive sequence current is the main fault indicator which is imported to neural network architecture. The output of the feedforward backpropagation neural network classifies the short circuit fault level of stator winding.


2020 ◽  
Vol 25 (1) ◽  
pp. 11 ◽  
Author(s):  
Abdelhak Mekahlia ◽  
Eric Semail ◽  
Franck Scuiller ◽  
Hussein Zahr

For three-phase induction machines supplied by sinusoidal current, it is usual to model the n-bar squirrel-cage by an equivalent two-phase circuit. For a multiphase induction machine which can be supplied with different harmonics of current, the reduced-order model of the rotor must be more carefully chosen in order to predict the pulsations of torque. The proposed analysis allows to avoid a wrong design with non-sinusoidal magnetomotive forces. An analytical approach is proposed and confirmed by Finite-Element modelling at first for a three-phase induction machine and secondly for a five-phase induction machine.


2018 ◽  
Vol 58 ◽  
pp. 03016 ◽  
Author(s):  
I.V Naumov ◽  
N.V. Savina ◽  
M.V. Shevchenko

One of the main operation modes that characterizes power quality in distribution networks is asymmetry of three-phase voltage system. Operation of an induction motor (IM) with disturbed voltage symmetry in the supply network can not be considered as a rated one. The system of voltages applied to the stator winding of IM under these conditions contains positive- and negative-sequence components. This worsens the performance characteristics of IM essentially. In order to balance the 0.38 kV network operation and enhance the efficiency of the three-phase electric motor operation it is suggested to use a special balancing unit (BU) that minimizes the negative-sequence components of current and voltage. The operation modes of the obtained system “supply source – induction motor – balancing unit” are simulated within the MATLAB software package of applied programs, which allows one to assess the impact of low quality of power on the operating characteristics of the electric motor and the efficiency of the balancing unit to increase the “durability” of the motor under the asymmetrical power consumption.


1981 ◽  
Vol 18 (3) ◽  
pp. 247-250
Author(s):  
W. F. Ma

A three-phase wound rotor induction motor is modified advantageously as a single-phase induction regulator so that a physical conception of the fundamental principles related to the induced e.m.f.s, balance of m.m.f.s and distribution of windings, which are pertinent to the study of induction machines, can be grasped through experimental observation.


Author(s):  
Mihai IORDACHE ◽  
Sorin DELEANU ◽  
Neculai GALAN

The three-phase induction machine mathematical model presented in the paper, is adequate for applying to the deep rotor bars case. The rotor resistance R’r(r), respectively its leakage inductivity L’r(r), depend upon the rotor currents’ frequency fr because of the skin effect. Following the previous considerations, one developed slip dependent analytical expressions of the rotor circuit resistance R’r(s), respectively rotor circuit leakage reactance L’r (s). A modified space phasor based mathematical model of the deep bar induction motor is tested through simulations to assess the motor’s characteristics. The results are in accordance with the literature.


2019 ◽  
Vol 10 (1) ◽  
pp. 113 ◽  
Author(s):  
Pedro A. Blasco ◽  
Rafael Montoya-Mira ◽  
José M. Diez ◽  
Rafael Montoya ◽  
Miguel J. Reig

The compensation of an electrical system from passive compensators mainly focuses on linear systems where the consumption of charges does not vary significantly over time. In three-phase three-wire systems, when the network voltages are unbalanced, negative-sequence voltages and currents appear, which can significantly increase the total apparent power supplied by the network. This also increases the network losses. This paper presents a method for calculating the compensation of the positive-sequence reactive power and unbalanced powers caused by the negative-sequence line currents using reactive elements (coils and/or capacitors). The compensation is applied to three-phase three-wire linear systems with unbalanced voltages and loads, which are connected to an infinite power network. The method is independent of the load characteristics, where only the line-to-line voltages and line currents, at the point where compensation is desired, need to be known in advance. The solution obtained is optimal, and the system observed from the network behaves as one that only consumes the active power required by a load with a fully balanced current system. To understand the proposed method and demonstrate its validity, a case study of a three-phase three-wire linear system connected to an infinite power network with unbalanced voltages and currents is conducted.


2010 ◽  
Vol 25 (3) ◽  
pp. 1816-1825 ◽  
Author(s):  
Francisco A S Neves ◽  
Marcelo Cabral Cavalcanti ◽  
Helber Elias Paz de Souza ◽  
Emilio J Bueno ◽  
Mario Rizo

Author(s):  
Tiezhou Wu ◽  
An Wang ◽  
Yawen Xu

Abstract By using power electronic devices, photovoltaic grid-connected power generation may inject harmonics into the power system. As the photovoltaic grid-connected inverter has the same basic structure as the active power filter, so the unified control of the photovoltaic grid and active filtering can be achieved. When the current unified control system compensates harmonics of the grid side, it mainly uses ip-iq harmonic detection method, which is based on instantaneous reactive power theory. When the three-phase voltage is unbalanced, the method has a large voltage phase angle detection error and the signal of the low-pass filter tracking system is long, detection time delay and even failure occur. This paper proposes an improved fast harmonic detection method. When phase deviation or amplitude change occurs to the three-phase voltage, the positive and negative-sequence voltages are simultaneously park transformed. The negative-sequence component is filtered by the current average module to obtain the fundamental amount of the voltage, then the phase angle of the positive-sequence voltage is accurately calculated to improve the harmonic current detection accuracy. Through the study of the integral method, it is found that the least common multiple of each harmonic period can be used as the integral interval, and the integral value is also zero, so the detection delay time is reduced by replacing the low-pass filter with an integration module. The simulation results show that the proposed harmonic detection algorithm can accurately detect harmonics when the three-phase voltage is unbalanced, and about 0.057 s improve the harmonic detection speed compared with the commonly used ip-iq method.


Sign in / Sign up

Export Citation Format

Share Document