EXPERIMENTAL INVESTIGATION OF A FOIL BEARING STRUCTURE WITH A POLYMER COATING UNDER DYNAMIC LOADS

Tribologia ◽  
2018 ◽  
Vol 281 (5) ◽  
pp. 5-12 ◽  
Author(s):  
Paweł BAGIŃSKI ◽  
Grzegorz ŻYWICA

This paper presents the results of research on the structural elements of a prototypical foil bearing in terms of its dynamic loads. In the framework of dynamic tests, several dozens of measurement series were carried out on a test rig specially prepared for this purpose. Dynamic excitations were applied using an electromagnetic exciter that enables changing the amplitude and frequency of the excitation force. Owing to this, it was possible to determine characteristics of the tested system in a wide range of loads and frequencies. A value of 400 Hz was assumed as the upper limit of the excitation frequency. The test rig enabled considering the direction of dynamic loads, which, as it turned out, had a significant impact on the obtained results. The research findings show that both the amplitude and frequency of an excitation force have a major impact on the stiffness and damping of the structural part of the foil bearing. The results of dynamic load tests complement the results of static tests performed earlier.

Author(s):  
Kai Feng ◽  
Xueyuan Zhao ◽  
Zhiyang Guo

With increasing need for high-speed, high-temperature, and oil-free turbomachinery, gas foil bearings (GFBs) have been considered to be the best substitutes for traditional oil-lubricated bearings. A multi-cantilever foil bearing (MCFB), a novel GFB with multi-cantilever foil strips serving as the compliant underlying structure, was designed, fabricated, and tested. A series of static and dynamic load tests were conducted to measure the structural stiffness and equivalent viscous damping of the prototype MCFB. Experiments of static load versus deflection showed that the proposed bearing has a large mechanical energy dissipation capability and a pronounced nonlinear static stiffness that can prevents overly large motion amplitude of journal. Dynamic load tests evaluated the influence of motion amplitude, loading orientation and misalignment on the dynamic stiffness and equivalent viscous damping with respect to excitation frequency. The test results demonstrated that the dynamic stiffness and damping are strongly dependent on the excitation frequency. Three motion amplitudes were applied to the bearing housing to investigate the effects of motion amplitude on the dynamic characteristics. It is noted that the bearing dynamic stiffness and damping decreases with incrementally increasing motion amplitudes. A high level of misalignment can lead to larger static and dynamic bearing stiffness as well as to larger equivalent viscous damping. With dynamic loads applied to two orientations in the bearing midplane separately, the dynamic stiffness increases rapidly and the equivalent viscous damping declines slightly. These results indicate that the loading orientation is a non-negligible factor on the dynamic characteristics of MCFBs.


Author(s):  
Ye Tian ◽  
Yanhua Sun ◽  
Lie Yu

This paper presents a multileaf foil bearing (MLFB), which consists of four resilient top foils and four stiff bump foils underneath; thus, a high supporting capacity and a high damping capacity can be achieved. A specially designed test rig is used to identify the structural stiffness and damping coefficients of the MLFB. The rotor of the test rig is supported by two journal MLFBs and a thrust active magnetic bearing (AMB) and the static and dynamic loads are applied by two radial AMBs. The tests on MLFBs were conducted under conditions of no shaft rotation at different angular positions and journal displacements with different excitation frequency. A frequency domain identification method is presented to determine the stiffness and damping coefficients. Static measurements show nonlinear deflections with applied forces, which varies with the orientation of the load angular position. The dynamic measurements show that the stiffness and equivalent viscous damping change with the excitation frequency. Furthermore, the stiffness and damping coefficients are related to the operating position where dynamic load tests were conducted. The investigation provides extensive measurements of the static and dynamic characteristics of the MLFB. These results can serve as a benchmark for the calibration of analytical tools under development.


Author(s):  
Laurent Rudloff ◽  
Mihai Arghir ◽  
Olivier Bonneau ◽  
Pierre Matta

The paper presents the results of the experimental analysis of static and dynamic characteristics of a generation 1 foil bearing of 38.1 mm diameter and L/D = 1. The test rig is of floating bearing type, the rigid shaft being mounted on ceramic ball bearings and driven up to 40 krpm. Two different casings are used for start-up and for measurement of dynamic coefficients. In its first configuration, the test rig is designed to measure the start-up torque. The foil bearing casing is made of two rings separated by a needle bearing for enabling an almost torque free rotation between the foil bearing and the static load. The basic results are the start up torque and the lift off speed. In its second configuration a different casing is used for measuring the impedances of the foil bearing. Misalignment is a problem that is minimized by using three flexible stingers connecting the foil bearing casing to the base plate of the test rig. The test rig enables the application of a static load and of the dynamic excitation on the journal bearing casing, and can measure displacements, forces and accelerations. Working conditions consisted of static loads comprised between 10 N and 50 N and rotation frequencies ranging from 260 Hz to 590 HZ. Excitation frequencies comprised between 100 Hz are 600 Hz are applied by two orthogonally mounted shakers for each working condition. Stiffness and damping coefficients are identified from the complex impedances and enable the calculation of natural frequencies. The experimental results show that the dynamic characteristics of the tested bearing have a weak dependence on the rotation speed but vary with the excitation frequency.


Author(s):  
Laurent Rudloff ◽  
Mihai Arghir ◽  
Olivier Bonneau ◽  
Pierre Matta

This paper presents the results of the experimental analysis of static and dynamic characteristics of a generation 1 foil bearing of 38.1 mm diameter and L/D=1. The test rig is of floating bearing type, the rigid shaft being mounted on ceramic ball bearings and driven up to 40 krpm. Two different casings are used for startup and for measurement of dynamic coefficients. In its first configuration, the test rig is designed to measure the startup torque. The foil bearing casing is made of two rings separated by a needle bearing to enable an almost torque free rotation between the foil bearing and the static load. The basic results are the startup torque and the lift-off speed. In its second configuration, a different casing is used to measure the impedances of the foil bearing. Misalignment is a problem that is minimized by using three flexible stingers connecting the foil bearing casing to the base plate of the test rig. The test rig enables the application of a static load and of the dynamic excitation on the journal bearing casing and can measure displacements, forces, and accelerations. Working conditions consisted of static loads comprised between 10 N and 50 N and rotation frequencies ranging from 260 Hz to 590 Hz. Excitation frequencies comprised between 100 Hz and 600 Hz are applied by two orthogonally mounted shakers for each working condition. Stiffness and damping coefficients are identified from the complex impedances and enable the calculation of natural frequencies. The experimental results show that the dynamic characteristics of the tested bearing have a weak dependence on the rotation speed but vary with the excitation frequency.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Kai Feng ◽  
Yuman Liu ◽  
Xueyuan Zhao ◽  
Wanhui Liu

Rotors supported by gas foil bearings (GFBs) experience stability problem caused by subsynchronous vibrations. To obtain a GFB with satisfactory damping characteristics, this study presented a novel hybrid bump-metal mesh foil bearing (HB-MMFB) that consists of a bump foil and metal mesh blocks in an underlying supporting structure, which takes advantage of both bump-type foil bearings (BFBs) and MMFBs. A test rig with a nonrotating shaft was designed to estimate structure characterization. Results from the static load tests show that the proposed HB-MFBs exhibit an excellent damping level compared with the BFBs with a similar size because of the countless microslips in the metal mesh blocks. In the dynamic load tests, the HB-MFB with a metal mesh density of 36% presents a viscous damping coefficient that is approximately twice that of the test BFB. The dynamics structural coefficients of HB-MFBs, including structural stiffness, equivalent viscous damping, and structural loss factor, are all dependent on excitation frequency and motion amplitude. Moreover, they exhibit an obvious decrease with the decline in metal mesh density.


Author(s):  
Tae Ho Kim ◽  
Young Min Kim ◽  
Jongsung Lee ◽  
Moon Sung Park ◽  
Kyoung-Ku Ha ◽  
...  

The widespread application of gas foil bearings (GFBs) to high-performance microturbomachinery requires accurate predictions for their physical models based on experimental test data. This paper presents the experimental measurements and model predictions of Duffing’s vibration in a rotor supported on GFBs with base excitation, implemented for small oil-free turbomachinery. The rotor consisted of an impeller at one end and a thrust collar at the other end. Two gas foil journal bearings (GFJBs) located between the impeller and thrust collar supported the rotor, and one pair of gas foil thrust bearings (GFTBs) supported the thrust collar. A series of dynamic excitation tests on the rotor-GFBs system was conducted with increasing dynamic load and excitation frequency, with the rotor operating at 20,000 rpm. An electromagnetic shaker provided dynamic sine sweep loads at excitation frequencies of 10–200 Hz to the test rig base in the axial and horizontal directions. An accelerometer installed on the test rig measured the acceleration due to the dynamic loads and provided it to the shaker controller for use as a reference signal. The acceleration level was controlled to ensure a constant value, while the excitation frequency increased. During the excitation tests, two sets of orthogonally positioned eddy current sensors and one axially positioned eddy current sensor recorded the rotor’s horizontal, vertical, and axial vibrations. The test measurements demonstrated that the rotor’s vibrational motions synchronous to the shaker excitation were the most dominant. At a constant dynamic load, as the excitation frequency increased, the amplitude of the rotor motion gradually increased until it reached a certain frequency, after which it jumped down at the higher frequencies. This amplitude jump-down phenomenon became more pronounced as the dynamic load increased. In general, both the peak amplitude and jump-down frequency increased nonlinearly with the increasing dynamic loads, thus revealing the typical Duffing’s vibration. For benchmarking against the test measurements, a previously developed numerical integration of a nonlinear equation of motion (EOM) was modified to predict the rotor’s vibrational motions with base excitations to an acceleration of 9 G (gravity). This nonlinear equation uses a third-order polynomial equation that best fits the measured structural foil bearing deflection versus static load. Comparisons of the predicted synchronous amplitude and acceleration of the rotor for the increasing excitation frequencies and the predicted waterfall plot of the amplitude of the rotor motion with the test measurements showed excellent agreements, thus validating the predictive model of the rotor-GFB system with base excitation.


Author(s):  
Luis San Andre´s ◽  
Keun Ryu

Demonstrated gas foil bearing (GFB) operation at high temperature is of interest for gas turbine applications. The effects of (high) shaft temperature on the structural stiffness and damping parameters of a foil bearing must be assessed experimentally. Presently, a hollow shaft warmed by an electric heater holds a floating 2nd generation FB that is loaded dynamically by an electromagnetic shaker. In tests with the shaft temperature up to 184°C, the measurements of dynamic load and ensuing FB deflection render the bearing structural parameters, stiffness and damping, as a function of excitation frequency and amplitude of motion. The identified FB stiffness and viscous damping coefficients increase with shaft temperature due to a reduction in the FB clearance. The bearing material structural loss factor, best representing mechanical energy dissipation, decreases slightly with shaft temperature while increasing with excitation frequency.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Wen-Bin Shangguan ◽  
Xiang-Kun Zeng

Experimental and modeling techniques for belt longitudinal static stiffness, longitudinal dynamic stiffness and damping coefficient, bending stiffness, and friction coefficient between a pulley and a belt are presented. Two methods for measuring longitudinal dynamic stiffness and damping coefficient of a belt are used, and the experimental results are compared. Experimental results show that the longitudinal dynamic stiffness of a belt is dependent on belt length, pretension, excitation amplitude and excitation frequency, and the damping coefficient of a belt is dependent on excitation frequency. Two models are presented to model the dependence of longitudinal dynamic stiffness and damping coefficient of a belt on belt length, pretension, excitation amplitude and excitation frequency. The proposed model is validated by comparing the estimated dynamic stiffness and damping with the experiment data. Also, the measurements of belt bending stiffness are carried out and the influences of the belt length on the belt bending stiffness are investigated. One test rig for measuring friction coefficient between a pulley and a belt are designed and fabricated, and the friction coefficient between the groove side belt with the groove side pulley, and the flat side belt with a flat pulley is measured with the test rig. The influences of wrap angle between pulley and belt, pretension of belt and rotational speed of the pulley on the friction coefficient are measured and analyzed. Taking an engine front end accessory drive system (FEAD) as the research example for the accessory drive system, experimental methods and the static and dynamic characteristics for the FEAD with seven pulleys, a tensioner, and a serpentine belt are presented.


Author(s):  
Tae Ho Kim ◽  
Luis San Andre´s ◽  
Anthony W. Breedlove

The forced response of a gas foil bearing (GFB), a typical rotor support in oil-free microturbomachinery, relies heavily on its resilient bump-strip layers structure, which also offers dry-friction type damping to ameliorate rotor vibrations. Operation at high temperature not only changes the FB elastic support material properties, but also produces thermal growth of the rotor and bearing components which ultimately affect the bearing structural stiffness and energy dissipation characteristics. The paper presents dynamic shaker load versus foil bearing structural deflection measurements for increasing shaft temperatures, from ambient to 188°C. In the tests, a FB supported on a non-rotating shaft is excited with a shaker at three load amplitudes (13 N, 22 N, and 31 N) and frequencies ranging from 40 to 200 Hz. A mechanical impedance model identifies the frequency dependent FB structural stiffness and equivalent viscous damping coefficient or dry-friction coefficient. Surface plots show trends in test results across increasing dynamic loads, shaft temperatures, and excitation frequencies. The FB stiffness increases by as much as 50% with dynamic loads amplitudes increasing from 13 N to 31 N. The stiffness nearly doubles from low to high frequencies; and most importantly, it decreases by a third as the shaft temperature rises to 188°C. In general, the FB dynamic structural stiffness is lower than its static stiffness, reported in a companion paper, at low excitation frequencies, while it becomes larger with increasing excitation frequency due apparently to a bump slip-stick phenomenon. The bearing viscous damping is inversely proportional to the amplitude of dynamic load, excitation frequency, and shaft temperature. The FB structure dry-friction coefficient decreases with increasing amplitude of applied load and shaft temperature, and increases with increasing excitation frequency. The experimental results demonstrate the paramount effect of operating temperature on the structural parameters of a foil bearing.


Author(s):  
C.-P. Roger Ku ◽  
Hooshang Heshmat

This paper presents the results of an investigation into the dynamic structural properties of self-acting compliant foil journal bearings. A test facility with a journal supported by a compliant foil journal bearing was built. The nonrotating journal was driven by two shakers which were used to simulate the dynamic forces acting on the bump foil strips. The structural stiffness and equivalent viscous damping coefficients are calculated based on the experimental measurements for a wide range of operating conditions. The results are compared to the analytical predictions obtained by a theoretical model developed earlier, and the effects of frequency are investigated. Both theoretical and experimental results show that an increase in the excitation frequency decreases the direct damping term. The effect of frequency on the cross-coupling terms is much less than on the direct terms.


Sign in / Sign up

Export Citation Format

Share Document