A study on magnetic field assisted laser percussion drilling and its effect on surface integrity

2018 ◽  
Vol 1 (94) ◽  
pp. 35-40
Author(s):  
S. Balamurugan ◽  
C. Bala Manikandan ◽  
P. Balamurugan

Purpose: of this paper is to reduce the taper angle and surface roughness of the laser drilled hole on Aluminium alloy with the assistance of magnetic field. At lower laser powers, able to achieve higher material removal rate in drilling with reduced taper angle and roughness. Design/methodology/approach: Aluminium alloy is a highly reflective material, while laser drilling it ejects plumes, which makes the drilling unreliable. The plume generated due to this action causes deteriorating effects over the work piece as such affecting surface textures. Removal of plume is the major consideration in laser machining process, especially in laser assisted drilling. The plume is a form of cluster of ions having charges in it. Due to the magnetic field input, the ions line the path along the lines of force of magnets. Thus, the ion cloud can be cleared at the localized plane, where the subsequent laser drilling going to be happens, leads to reduced plume thereby reduces the taper angle and surface roughness. Findings: The defect of percussion laser drilling that is barrelling effect in the drilled hole was reduced with the assistance of magnetic field setup. For the laser energy of 90 mJ, the magnetic assisted laser drilling shows better improvement in the material removal rate of 64.5%, the profile error (spatter height) was reduced to 45% and the taper angle of the drilled hole also reduced by 16.3%. The results confirmed the fact that, the Lorentz force confined the plume particle to be raised upwards and circulated outwards to the sidewall from the centre of the laser beam. This expansion of laser induced plasma plume, improved the material removal rate of the hole. Research limitations/implications: Laser drilling was carried out by a constant magnetic field and the parameters like material removal rate, taper angle, profile error, surface roughness were studied. In the future work, these parameters were studied with the application of varying magnetic field. Practical implications: As a result of the work, laser drilling was carried out on turbine blades or complex shapes for retention properties, with reduced taper hole and surface roughness, thereby improving the efficiency of the systems. Originality/value: The novelty of the work is providing magnetic flux for the laser drilling process, which improves the process parameters. The incorporation of magnetic field to the laser drill needs a cost less setup, which can ensure reliable improvement in the material removal rate, reduction in taper angle and profile error.

2019 ◽  
Vol 814 ◽  
pp. 127-131
Author(s):  
Patittar Nakwong ◽  
Apiwat Muttamara

Wire electrical discharge machine (WEDM) is non-conventional machining process. It can be used for hard cutting material. The study has been presented the combining WEDM with an ultrasonic machine (USM) with brass and tungsten were used as a wire electrode and workpiece respectively. The experiment was carried out with an ultrasonic transducer at 40, 80 kHz. The results were observed with the material removal rate (MRR) and surface roughness (Ra). This research introduced the method of USM setup and described the effected of vibration with the wire electrode on the displacement of amplitude. The result shows that the WEDM process with USM at 40 kHz can be more improved with the material removal rate and surface roughness than that of USM at 80 kHz. This can be explained that higher frequency affected to vibration displacement which makes lower amplitude.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 125 ◽  
Author(s):  
Lei Guo ◽  
Xinrong Zhang ◽  
Shibin Chen ◽  
Jizhuang Hui

Ultraviolet-curable resin was introduced as a bonding agent into the fabrication process of precision abrasive machining tools in this study, aiming to deliver a rapid, flexible, economical, and environment-friendly additive manufacturing process to replace the hot press and sintering process with thermal-curable resin. A laboratory manufacturing process was established to develop an ultraviolet-curable resin bond diamond lapping plate, the machining performance of which on the ceramic workpiece was examined through a series of comparative experiments with slurry-based iron plate lapping. The machined surface roughness and weight loss of the workpieces were periodically recorded to evaluate the surface finish quality and the material removal rate. The promising results in terms of a 12% improvement in surface roughness and 25% reduction in material removal rate were obtained from the ultraviolet-curable resin plate-involved lapping process. A summarized hypothesis was drawn to describe the dynamically-balanced state of the hybrid precision abrasive machining process integrated both the two-body and three-body abrasion mode.


2011 ◽  
Vol 189-193 ◽  
pp. 1393-1400 ◽  
Author(s):  
M.M. Rahman

Electrical discharge machining (EDM) is relatively modern machining process having distinct advantages over other machining processes and able to machine Ti-alloys effectively. This paper attempts to investigate the effects of process parameters on output response of titanium alloy Ti-6Al-4V in EDM utilizing copper tungsten as an electrode and positive polarity of the electrode. Mathematical models for material removal rate (MRR), electrode wear rate (EWR) and surface roughness (SR) are developed in this paper. Design of experiments method and response surface methodology techniques are implemented. The validity test of the fit and adequacy of the proposed models has been carried out through analysis of variance. It can be seen that as the peak current increases the TWR decreases till certain ampere and then increases. The excellent surface finish is investigated in this study at short pulse on time and in contrast the long pulse duration causes the lowest EWR. Long pulse off time provides minimum EWR and the impact of pulse interval on EWR depends on peak current. The result leads to wear rate of electrode and economical industrial machining by optimizing the input parameters. It found that the peak current, servo voltage and pulse on time are significant in material removal rate and surface roughness. Peak current has the greater impact on surface roughness and material removal rate.


Electro discharge machining is a non-traditional machining process used for machining hard-to-machine materials, such as various grades of titanium alloys, heat-treated alloy steels, composites, tungsten carbides, and so forth. These materials are hard to machine with customary machining procedures like drilling, milling and hence electro-discharge machining is used to machine such materials to get better quality and efficiency. These materials are generally utilized in current industries like die making industries, aeronautics, nuclear industries, and medical fields. This type of machining is thermalbased, and machining takes place due to repetitive electric sparks that generate between workpiece and tool. Both tools and workpieces are inundated in a dielectric liquid, which has two primary functions. In the first place, it behaves like a medium between the work metal and the tool. Second, it is a flushing agent to expel the machined metal from the machined zone. Machining parameters like a pulse on time, current, wire feed the tool and gap voltage affect the output responses like surface roughness and material removal rate. The material removal rate is a significant parameter that determines machining efficiency. Surface roughness is also a vital parameter that decides machining quality. A lot of research has been conducted to determine the optimum parameters for obtaining the best results. In the present work, a comprehensive review of different types of EDM and the effect of various machining parameters on the surface roughness, material removal rate, and other response parameters has been done.


This study uses Taguchi methodology and Gray Relational Analysis approach to explore the optimization of face milling process parameters for Al 6061 T6 alloy.Surface Roughness (Ra), Material Removal Rate (MRR) has been identified as the objective of performance and productivity.The tests were performed by selecting cutting speed (mm / min), feed rate (mm / rev) and cutting depth (mm) at three settings on the basis of Taguchi's L9 orthogonal series.The grey relational approach was being used to establish a multiobjective relationship between both the parameters of machining and the characteristics of results. To find the optimum values of parameters in the milling operation, the response list and plots are used and found to be Vc2-f1-d3. To order to justify the optimum results, the confirmation tests are performed.The machining process parameters for milling were thus optimized in this research to achieve the combined goals such as low surface roughness and high material removal rate on Aluminum 6061 t6.It was concluded that depth of cut is the most influencing parameter followed by feed rate and cutting velocity.


2018 ◽  
Vol 28 ◽  
pp. 55-66 ◽  
Author(s):  
Kuldeep Singh ◽  
Khushdeep Goyal ◽  
Deepak Kumar Goyal

In research work variation of cutting performance with pulse on time, pulse off time, wire type, and peak current were experimentally investigated in wire electric discharge machining (WEDM) process. Soft brass wire and zinc coated diffused wire with 0.25 mm diameter and Die tool steel H-13 with 155 mm× 70 mm×14 mm dimensions were used as tool and work materials in the experiments. Surface roughness and material removal rate (MRR) were considered as performance output in this study. Taguchi method was used for designing the experiments and optimal combination of WEDM parameters for proper machining of Die tool steel (H-13) to achieve better surface finish and material removal rate. In addition the most significant cutting parameter is determined by using analysis of variance (ANOVA). Keywords Machining, Process Parameters, Material removal rate, Surface roughness, Taguchi method


Author(s):  
Vikas Gohil ◽  
Yogesh M Puri

Electrical discharge turning is a unique form of electrical discharge machining process, which is being especially developed to generate cylindrical forms and helical profiles on the difficult-to-machine materials at both macro and micro levels. A precise submerged rotating spindle as a work holding system was designed and added to a conventional electrical discharge machine to rotate the workpiece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating workpiece; thus, mirror image of the tool is formed on the circumference of the workpiece. The machining performance of electrical discharge turning process is defined and influenced by its machining parameters, which directly affects the quality of the machined component. This study presents an investigation on the effects of the machining parameters, namely, pulse-on time, peak current, gap voltage, spindle speed and flushing pressure, on the material removal rate (MRR) and surface roughness (Ra) in electrical discharge turning of titanium alloy Ti-6Al-4V. This has been done by means of Taguchi’s design of experiment technique. Analysis of variance as well as regression analysis is performed on the experimental data. The signal-to-noise ratio analysis is employed to find the optimal condition. The experimental results indicate that peak current, gap voltage and pulse-on time are the most significant influencing parameters that contribute more than 90% to material removal rate. In the context of Ra, peak current and pulse-on time come up with more than 82% of contribution. Finally, the obtained predicted optimal results were verified experimentally. It was shown that the error values are all less than 6%, confirming the feasibility and effectiveness of the adopted approach.


2019 ◽  
Vol 10 (1) ◽  
pp. 44-55
Author(s):  
Abbas Ibrahim ◽  
◽  
Ahmed Abdulwahhab ◽  
Alaa Shabeeb ◽  
◽  
...  

2021 ◽  
Author(s):  
S. S Kulkarni ◽  
Sarika Sharma

This paper represents the optimization method utilized in machining process for figuring out the most advantageous manner design. Typically, the technique layout parameters in machining procedures are noticeably few turning parameters inclusive of reducing velocity, feed and depth. The optimization of speed, feed depth of cut is very tough because of several other elements associated with processing situations and form complexities like surface Roughness, material removal rate (MRR) that are based Parameters. On this task a new fabric glass fibre composite is introduced through which could lessen costing of manufacturing and time and additionally it will boom the technique of productiveness. Composite substances have strength, stiffness, light weight, which gives the large scope to engineering and technology. The proposed research work targets to analyze turning parameters of composite material. The machining parameters are very important in manufacturing industries. The present research work is optimized surface roughness of composite material specifically in turning procedure with the aid of changing parameter including intensity of reduce, slicing velocity and feed price and additionally expect the mechanical houses of composite material. The RSM optimization is important because it evaluates the effects of multiple factors and their interactions on one or more responsive variables. It is observed that the material removal rate increases and surface roughness decreases as per the increase of Spindle speed and feed rate.


Sign in / Sign up

Export Citation Format

Share Document