scholarly journals A Concept of Live Fire Testing to Identify the Aerodynamic Factors of a 35-mm AA Projectile

2019 ◽  
Vol 10 (2) ◽  
pp. 89-102
Author(s):  
Leszek BARANOWSKI ◽  
Błażej GADOMSKI ◽  
Przemysław MAJEWSKI ◽  
Jacek SZYMONIK

This paper presents a generic algorithm designed to identify aerodynamic factors among the data specified in firing tables and projectile flight parameter data recorded during live fire tests. The algorithm and the concept of live fire testing shown here allow developing a mathematical model of projectile trajectory in the form of a modified motion model of a point mass. Potential applications of the model include fire control systems.

2016 ◽  
Vol 64 (1) ◽  
pp. 81-89 ◽  
Author(s):  
L. Baranowski ◽  
B. Gadomski ◽  
P. Majewski ◽  
J. Szymonik

Abstract Various models of a projectile in a resisting medium are used. Some are very simple, like the “point mass trajectory model”, others, like the “rigid body trajectory model”, are complex and hard to use, especially in Fire Control Systems due to the fact of numeric complexity and an excess of less important corrections. There exist intermediate ones - e.g. the “modified point mass trajectory model”, which unfortunately is given by an implicitly defined differential equation as Sec. 1 discusses. The main objective of this paper is to present a way to reformulate the model obtaining an easy to solve explicit system having a reasonable complexity yet not being parameter-overloaded. The final form of the M-model, after being carefully derived in Sec. 2, is presented in Subsec. 2.5.


Author(s):  
Józef GACEK ◽  
Grzegorz LEŚNIK

The paper presents the results of theoretical and experimental tests aimed at developing sets of data. These sets are necessary for compiling firing tables and the operating algorithm for the ballistic computer of a fire control system intended for the mortar system currently used by the Polish Armed Forces as well as the mortar system currently under development. Economy, time saving and the development of numerical methods justify the use of computer simulations for the process of developing software for fire control systems. The theoretical results can only be used for this purpose if their level of compliance with experimental results of live fire tests is acceptable.


Author(s):  
Denys Popelysh ◽  
Yurii Seluk ◽  
Sergyi Tomchuk

This article discusses the question of the possibility of improving the roll stability of partially filled tank vehicles while braking. We consider the dangers associated with partially filled tank vehicles. We give examples of the severe consequences of road traffic accidents that have occurred with tank vehicles carrying dangerous goods. We conducted an analysis of the dynamic processes of fluid flow in the tank and their influence on the basic parameters of the stability of vehicle. When transporting a partially filled tank due to the comparability of the mass of the empty tank with the mass of the fluid being transported, the dynamic qualities of the vehicle change so that they differ significantly from the dynamic characteristics of other vehicles. Due to large displacements of the center of mass of cargo in the tank there are additional loads that act vehicle and significantly reduce the course stability and the drivability. We consider the dynamics of liquid sloshing in moving containers, and give examples of building a mechanical model of an oscillating fluid in a tank and a mathematical model of a vehicle with a tank. We also considered the method of improving the vehicle’s stability, which is based on the prediction of the moment of action and the nature of the dynamic processes of liquid cargo and the implementation of preventive actions by executive mechanisms. Modern automated control systems (anti-lock brake system, anti-slip control systems, stabilization systems, braking forces distribution systems, floor level systems, etc.) use a certain list of elements for collecting necessary parameters and actuators for their work. This gives the ability to influence the course stability properties without interfering with the design of the vehicle only by making changes to the software of these systems. Keywords: tank vehicle, roll stability, mathematical model, vehicle control systems.


To obtain reliable data on the properties of liquid metal and create automated control systems, the technological process of molding with crystallization under pressure is studied. A mathematical model of the input and output process parameters is developed. It is established that the compressibility of the melt can represent the main controlled parameter influencing on the physical-mechanical properties of the final products. The obtained castings using this technology are not inferior in their physical and mechanical properties to those produced by forging or stamping.


Fire ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 8
Author(s):  
Jeonghwa Park ◽  
Jihyun Kwark

Fires are accidents that can cause numerous human casualties in multiplexes. The simple sprinkler systems applied in South Korea employ sprinklers to protect people against residential fires, as specified by the National Fire Protection Association (NFPA) standard 13D. Therefore, it is necessary to evaluate the fire control performance of multiplexes, which are at a greater risk than residential facilities. This study aims to verify the fire control performance of simple sprinklers in multiplexes and to develop a fire source that can be used as a protocol for testing fire suppression methods. The fire source was evaluated by using a 3 MW large-scale calorimeter (ISO 13784). The proposed fire source for multiplexes was applied in various forms according to the application methods, with ignition sources including cotton wick, wood crib, and heptane, and then the fire tests were conducted.


Sign in / Sign up

Export Citation Format

Share Document