GROUND REACTION FORCES OF COMMONLY USED VOLLEYBALL BLOCKING APPROACHES

2020 ◽  
Vol 30 (89) ◽  
pp. 13-20
Author(s):  
Dimitrije Cabarkapa ◽  
Andrew Fry ◽  
Damjana Cabarkapa ◽  
Arden Rogers ◽  
Eric Mosier

Aim: The purpose of this study was to quantify ground reaction forces for some of the most commonly utilised volleyball blocking approaches and to examine their kinetic and kinematic characteristics. Basic procedures: The study was comprised of 18 healthy recreationally active women who volunteered to participate. Immediately after completion of the warm-up protocol, subjects performed 5 blocking approaches: stationary blocking approach (SBA), shuffle block to the right (SHBR), shuffle block to the left (SHBL), swing block to the right (SWBR) and swing block to the left (SWBL). In order to allow adequate recovery, each trial was randomly assigned and separated by a 1-2 minute rest interval. A uni-axial force plate with data acquisition system sampling at 1000 Hz was used to measure ground reaction forces. Main findings: SWBR and SWBL unveiled the greatest peak concentric force and rate of force development when compared to SBA, while no difference was observed when compared to SHBR and SHBL. Results: No significant differences were observed in peak landing force, impulse, and vertical jump height between any of the blocking approaches examined in this study. Conclusions: Knowing biomechanical characteristics of some of the most commonly utilised volleyball blocking approaches may help athletes to appropriately respond and quickly adjust to the opponent’s attacking position. Kinetic and kinematic variables are likely to be augmented with an advanced level of competition and can be trained and improved by properly designed and implemented strength and conditioning programmes.

2020 ◽  
Vol 22 (4) ◽  
Author(s):  
Anna Ferreira ◽  
Michał Górski ◽  
Jan Gajewski

Purpose: The aim of the study was to investigate the relationships between shuttlecock velocity during a badminton forehand smash with and without jump (VmaxWJ and VmaxNJ), strength of upper limb muscles, vertical jump height and to analyze differences in these parameters for each gender. Methods: The study examined members of the Polish National Badminton Team seven women and seven men. A special torque meter was used to assess the strength of the upper limb muscles. Vertical jumps were performed on an AMTI force plate. Shuttlecock velocity was measured using Vicon motion capture system. Results: Differences between the right and left limbs were observed in all muscle groups except shoulder flexion for both genders. The results of all measured parameters: torques, height of countermovement and spike jump (HACMJ, HCMJ, HSPJ), VmaxWJ and VmaxNJ, were greater for men than for women. No statistically significant differences were found between VmaxWJ (men: 83.27 ± 4.83 m/s; women: 67.57 ± 4.21 m/s) and VmaxNJ (men: 84.19 ± 6.05 m/s; women: 69.70 ± 6.53 m/s) within the same gender. Positive correlations were found between both HCMJ and HSPJ regarding VmaxWJ in men; the height of shuttlecock impact in jump smash (HWJ) and HSPJ in women; proving the importance of jumping ability in badminton. Negative correlations were found between HWJ and VmaxWJ for both genders. Conclusions: The jump before smash is not used in order to hit the shuttle from the highest point, but to gain time to correctly prepare the phase of stroke while being in the air.


2021 ◽  
Vol 25 (1) ◽  
pp. 30-37
Author(s):  
Sarah Klopp Christensen ◽  
Aaron Wayne Johnson ◽  
Natalie Van Wagoner ◽  
Taryn E. Corey ◽  
Matthew S. McClung ◽  
...  

Irish dance has evolved in aesthetics that lead to greater physical demands on dancers' bodies. Irish dancers must land from difficult moves without letting their knees bend or heels touch the ground, causing large forces to be absorbed by the body. The majority of injuries incurred by Irish dancers are due to overuse (79.6%). The purpose of this study was to determine loads on the body of female Irish dancers, including peak force, rise rate of force, and impulse, in eight common Irish hard shoe and soft shoe dance movements. It was hypothesized that these movements would produce different ground reac- tion force (GRF) characteristics. Sixteen female Irish dancers were recruited from the three highest competitive levels. Each performed a warm-up, reviewed the eight movements, and then performed each movement three times on a force plate, four in soft shoes and four in hard shoes. Ground reaction forces were measured using a three-dimensional force plate recording at 1,000 Hz. Peak force, rise rate, and vertical impulse were calculated. Peak forces normalized by each dancer's body weight for each of these variables were significantly different between move- ments and shoe types [F(15, 15)= 65.4, p < 0.01; F(15, 15) = 65.0, p < 0.01; and F(15, 15) = 67.4, p < 0.01, respectively]. The variable years of experience was not correlated with peak force, rise rate, or impulse (p > 0.40). It is concluded that there was a large range in GRF characteristics among the eight movements studied. Understanding the force of each dance step will allow instructors to develop training routines that help dancers adapt gradually to the high forces experienced in Irish dance training and competitions, thereby limiting the potential for overuse injuries.


2006 ◽  
Vol 3 (4) ◽  
pp. 209-216 ◽  
Author(s):  
Pia Gustås ◽  
Christopher Johnston ◽  
Stig Drevemo

AbstractThe objective of the present study was to compare the hoof deceleration and ground reaction forces following impact on two different surfaces. Seven unshod Standardbreds were trotted by hand at 3.0–5.7 m s− 1 over a force plate covered by either of the two surfaces, sandpaper or a 1 cm layer of sand. Impact deceleration data were recorded from one triaxial accelerometer mounted on the fore- and hind hooves, respectively. Ground reaction force data were obtained synchronously from a force plate, sampled at 4.8 kHz. The differences between the two surfaces were studied by analysing representative deceleration and force variables for individual horses. The maximum horizontal peak deceleration and the loading rates of the vertical and the horizontal forces were significantly higher on sandpaper compared with the sand surface (P < 0.001). In addition, the initial vertical deceleration was significantly higher on sandpaper in the forelimb (P < 0.001). In conclusion, it was shown that the different qualities of the ground surface result in differences in the hoof-braking pattern, which may be of great importance for the strength of the distal horse limb also at slow speeds.


Author(s):  
Matthew R. Maulit ◽  
David C. Archer ◽  
Whitney D. Leyva ◽  
Cameron N. Munger ◽  
Megan A. Wong ◽  
...  

Background: Recent research has compared explosive deadlift to kettlebell training observing their effects on strength. The kettlebell swing is a popular practical exercise as it shares share a hip hinge movement with the explosive deadlift, but the two have not been compared. Objectives: The purpose of this study was to compare the effects of kettlebell swing vs. explosive deadlift training on strength and power. Methods: Thirty-one recreationally resistance-trained men (age = 23.1 ± 2.3 years, height = 175.5 ± 6.6 cm, mass = 83.9 ± 13.8 kg, 1RM deadlift = 159.9 ± 31.7 kg) were randomly assigned to one of two groups [kettlebell swing group (KBG) n = 15, or explosive deadlift group (EDLG) n = 16]. Vertical jump height, isometric mid-thigh pull (MTP), and 1RM deadlift were measured pre and post training. Both groups trained twice per week for 4 weeks. Volume and load were increased after the first 2 weeks of training. Results: A 2 (time) x 2 (group) mixed factor ANOVA revealed a significant (P<0.05) increase in deadlift 1RM (pre: 159.9 ± 31.7 kg, post: 168.9 ± 31.8 kg) and vertical jump height (pre: 56.6 ± 9.9 cm, post: 57.9 ± 9.7 cm) for both groups, but were not significantly different between groups. There were no significant changes in MTP. Conclusions: Strength and conditioning professionals may use both kettlebell swings and explosive deadlifts to increase deadlift strength and vertical jump power.


2021 ◽  
Vol 10 (22) ◽  
pp. 5299
Author(s):  
Łukasz Sikorski ◽  
Andrzej Czamara

The objective of this study was to assess the effectiveness of, and the correlation between, an average of 42 supervised physiotherapy (SVPh) visits for the vertical ground reaction forces component (vGRF) using ankle hops during two- and one-legged vertical hops (TLH and OLH, respectively), six months after the surgical suturing of the Achilles tendon using the open method (SSATOM) via Keesler’s technique. Hypothesis: Six months of supervised physiotherapy with a higher number of visits (SPHNVs) was positively correlated with higher vGRF values during TLH and OLH. Group I comprised male patients (n = 23) after SSATOM (SVPh x = 42 visits), and Group II comprised males (n = 23) without Achilles tendon injuries. In the study groups, vGRF was measured during TLH and OLH in the landing phase using two force plates. The vGRF was normalized to the body mass. The limb symmetry index (LSI) of vGRF values was calculated. The ranges of motion of the foot and circumferences of the ankle joint and shin were measured. Then, 10 m unassisted walking, the Thompson test, and pain were assessed. A parametric test for dependent and independent samples, ANOVA and Tukey’s test for between-group comparisons, and linear Pearson’s correlation coefficient calculations were performed. Group I revealed significantly lower vGRF values during TLH and OLH for the operated limb and LSI values compared with the right and left legs in Group II (p ≤ 0.001). A larger number of visits correlates with higher vGRF values for the operated limb during TLH (r = 0.503; p = 0.014) and OLH (r = 0.505; p = 0.014). An average of 42 SVPh visits in 6 months was insufficient to obtain similar values of relative vGRF and their LSI during TLH and OLH, but the hypothesis was confirmed that SPHNVs correlate with higher relative vGRF values during TLH and OLH in the landing phase.


2007 ◽  
Vol 23 (3) ◽  
pp. 180-189 ◽  
Author(s):  
Niell G. Elvin ◽  
Alex A. Elvin ◽  
Steven P. Arnoczky

Modern electronics allow for the unobtrusive measurement of accelerations outside the laboratory using wireless sensor nodes. The ability to accurately measure joint accelerations under unrestricted conditions, and to correlate them with jump height and landing force, could provide important data to better understand joint mechanics subject to real-life conditions. This study investigates the correlation between peak vertical ground reaction forces, as measured by a force plate, and tibial axial accelerations during free vertical jumping. The jump heights calculated from force-plate data and accelerometer measurements are also compared. For six male subjects participating in this study, the average coefficient of determination between peak ground reaction force and peak tibial axial acceleration is found to be 0.81. The coefficient of determination between jump height calculated using force plate and accelerometer data is 0.88. Data show that the landing forces could be as high as 8 body weights of the jumper. The measured peak tibial accelerations ranged up to 42 g. Jump heights calculated from force plate and accelerometer sensors data differed by less than 2.5 cm. It is found that both impact accelerations and landing forces are only weakly correlated with jump height (the average coefficient of determination is 0.12). This study shows that unobtrusive accelerometers can be used to determine the ground reaction forces experienced in a jump landing. Whereas the device also permitted an accurate determination of jump height, there was no correlation between peak ground reaction force and jump height.


2008 ◽  
Vol 21 (03) ◽  
pp. 243-249 ◽  
Author(s):  
D. Damur ◽  
T. Guerrero ◽  
M. Haessig ◽  
P. Montavon ◽  
K. Voss

Summary Objective: To assess functional outcome in dogs with cranial cruciate ligament (CrCL) disease after tibial tuberosity advancement (TTA) using force plate gait analysis, and to evaluate parameters potentially influencing outcome. Study design: Prospective clinical study. Animals: Consecutive clinical patients (n=37) with CrCL-deficient stifles (n=40). Methods: The stifle joints were examined arthroscopically prior to TTA. Meniscal release was not performed if the medial meniscus was intact. Open medial arthrotomy and partial meniscectomy were performed in the presence of meniscal tears. Vertical ground reaction forces were measured preoperatively and at follow-up examinations four to 16 months postoperatively (mean: 5.9 months). The ground reaction forces of a group of 65 healthy dogs were used for the comparison. The potential effects of clinical parameters on functional outcome were evaluated statistically. Results: Complete CrCL rupture was identified in 28 joints, and partial CrCL rupture in 12 joints. The medial meniscus was damaged in 21 stifles. Vertical ground reaction forces were significantly higher at follow-up (P<0.01), but remained significantly lower than those of control dogs (P<0.01). Complications were identified in 25% of joints, and the dogs with complications had significantly lower peak vertical forces at follow-up than the dogs without complications (P=0.04). Other clinical parameters did not influence outcome. Conclusions: Tibial tuberosity advancement significantly improved limb function in dogs with CrCL disease, but did not result in complete return to function. Complications adversely affected functional outcome. Clinical significance: A return to a function of approximately 90% of normal can be expected in dogs with CrCL disease undergoing TTA.


2007 ◽  
Vol 23 (4) ◽  
pp. 322-329 ◽  
Author(s):  
Chip Wade ◽  
Mark S. Redfern

Locomotion over ballast surfaces provides a unique situation for investigating the biomechanics of gait. Although much research has focused on level and sloped walking on a smooth, firm surface in order to understand the common kinematic and kinetic variables associated with human locomotion, the literature currently provides few if any discussions regarding the dynamics of locomotion on surfaces that are either rocky or uneven. The purpose of this study was to investigate a method for using force plates to measure the ground reaction forces (GRFs) during gait on ballast. Ballast is a construction aggregate of unsymmetrical rock used in industry for the purpose of forming track bed on which railway ties are laid or in yards where railroad cars are stored. It is used to facilitate the drainage of water and to create even running surfaces. To construct the experimental ballast surfaces, 31.75-mm (1¼-in.) marble ballast at depths of approximately 63.5 mm (2.5 in.) or 101.6 mm (4 in.) were spread over a carpeted vinyl tile walkway specially designed for gait studies. GRF magnitudes and time histories from a force plate were collected under normal smooth surface and under both ballast surface conditions for five subjects. GRF magnitudes and time histories during smooth surface walking were similar to GRF magnitudes and time histories from the two ballast surface conditions. The data presented here demonstrate the feasibility of using a force plate system to expand the scope of biomechanical analyses of locomotion on ballast surfaces.


2010 ◽  
Vol 2 (2) ◽  
pp. 3481
Author(s):  
Christian Baumgart ◽  
Volker Lange-Berlin ◽  
Rüdiger Hofmann ◽  
Jürgen Freiwald

Sign in / Sign up

Export Citation Format

Share Document