scholarly journals SIMULATION OF THE COMBUSTION PROCESS IN THE ELECTRONICALLY CONTROLLED MARINE DIESEL ENGINE

2014 ◽  
Vol 21 (4) ◽  
pp. 233-238
Author(s):  
Stefan Kluj
2018 ◽  
Vol 8 (12) ◽  
pp. 2489 ◽  
Author(s):  
Yu Ding ◽  
Congbiao Sui ◽  
Jincheng Li

The marine diesel engine combustion process is discontinuous and unsteady, resulting in complicated simulations and applications. When the diesel engine is used in the system integration simulation and investigation, a suitable combustion model has to be developed due to compatibility to the other components in the system. The Seiliger process model uses finite combustion stages to perform the main engine combustion characteristics and using the cycle time scale instead of the crank angle shortens the simulation time. Obtaining the defined Seiliger parameters used to calculate the engine performance such as peak pressure, temperature and work is significant and fitting process has to be carried out to get the parameters based on experimental investigation. During the combustion fitting, an appropriate mathematics approach is selected for root finding of non-linear multi-variable functions since there is a large amount of used experimental data. A direct injection marine engine test bed is applied for the experimental investigation based on the combustion fitting approach. The results of each cylinder and four-cylinder averaged pressure signals are fitted with the Seiliger process that is shown separately to obtain the Seiliger parameters, and are varied together with these parameters and with engine operating conditions to provide the basis for engine combustion modeling.


2019 ◽  
Author(s):  
Frengki Mohamad Felayati ◽  
Semin ◽  
Muhammad Badrus Zaman ◽  
Ayudhia Pangestu Gusti

Author(s):  
B Li ◽  
H T Gao

With the advantages of ultra-low emissions of oxides of nitrogen (NOX) and high thermal efficiency, the homogeneous charge compression ignition (HCCI) mode applied to marine diesel engine is expected to be one of the technical solutions to meet the International Maritime Organization (IMO) MARPOL73/78 Convention-Annex VI Amendment Tier III requirement. According to the NOX chemical reaction mechanism, taking a marine diesel engine as the application object, the numerical study on the NOX formation characteristics of n-heptane for HCCI combustion process is performed. The results indicate that NO is usually the main component in the generation and emissions of NOX with the n-heptane HCCI mode. The combustor temperature plays more important role in the proportion of NO generation and emission. Compared with the experimental data of conventional marine diesel engine, the emission reduction rate of NOX can achieve an average of more than 95% in using HCCI technology.


2017 ◽  
Vol Vol 159 (A2) ◽  
Author(s):  
B Li ◽  
H T Gao

With the advantages of ultra-low emissions of oxides of nitrogen (NOX) and high thermal efficiency, the homogeneous charge compression ignition (HCCI) mode applied to marine diesel engine is expected to be one of the technical solutions to meet the International Maritime Organization (IMO) MARPOL73/78 Convention-Annex VI Amendment Tier III requirement. According to the NOX chemical reaction mechanism, taking a marine diesel engine as the application object, the numerical study on the NOX formation characteristics of n-heptane for HCCI combustion process is performed. The results indicate that NO is usually the main component in the generation and emissions of NOX with the n-heptane HCCI mode. The combustor temperature plays more important role in the proportion of NO generation and emission. Compared with the experimental data of conventional marine diesel engine, the emission reduction rate of NOX can achieve an average of more than 95% in using HCCI technology.


2021 ◽  
Author(s):  
Junfu Yuan ◽  
Chunsheng Zhao

Marine diesel engine is developing towards the direction of precision, automation and systematization, and it has the characteristics of complex structure and many parts. If it breaks down, it will affect the operation safety of the whole ship. If it is serious, accidents may occur, which may cause maritime accidents. Therefore, how to prevent the occurrence of marine diesel engine failure and analyze the cause of failure after the accident has been paid more and more attention by scholars at home and abroad. In the simulation study of the working process of diesel engine, for different types of diesel engines, the laws of combustion process are different, even for the same diesel engine in different working conditions, the combustion laws are also different, which will cause great difficulties to study the combustion process. Using computer simulation technology, the physical calculation model of diesel engine system is established by simulating the typical combustion faults of marine diesel engine. AVL-FIRE software is used to simulate different faults of diesel engine combustion process, and the changes of various performance parameters of diesel engine under corresponding faults are obtained, so as to grasp its working state macroscopically, and provide relevant basis for the design, optimization and operation management of diesel engine system.


2011 ◽  
Vol 214 ◽  
pp. 628-632
Author(s):  
Song Zhou ◽  
Yuan Qing Zhu

This paper presents the simulation results of histories of pressure, temperature and NO concentrations as well as combustion process and NOx formation in a marine diesel engine. The simulation was done within a full engine cycle with a three-dimensional, transient combustion model including a more accurate NO formation model. Simulation results were verified by data obtained from benchmark tests and further analyses of distributions of pollutants were carried out in this paper. Conclusions from simulation about engine combustion and NOx formation have been finally achieved.


Sign in / Sign up

Export Citation Format

Share Document