scholarly journals Investigating the Impact of Social Awareness and Rapid Test on A COVID-19 Transmission Model

2021 ◽  
Vol 4 (1) ◽  
pp. 46-64
Author(s):  
Muhammad Afief Balya ◽  
Bunga Oktaviani Dewi ◽  
Faza Indah Lestari ◽  
Gayatri Ratu ◽  
Hanna Rosuliyana ◽  
...  

In this article, we propose and analyze a mathematical model of COVID-19 transmission among a closed population, with social awareness and rapid test intervention as the control variables. For this, we have constructed the model using a compartmental system of the ordinary differential equations. Dynamical analysis regarding the existence and local stability of equilibrium points is conducted rigorously. Our analysis shows that COVID-19 will disappear from the population if the basic reproduction number is less than one, and persist if the basic reproduction number is greater than one. In addition, we have shown a trans-critical bifurcation phenomenon based on our proposed model when the basic reproduction number equals one. From the elasticity analysis, we have observed that rapid testing is more promising in reducing the basic reproduction number as compared to a media campaign to improve social awareness on COVID-19. Using the Pontryagin Maximum Principle (PMP), the characterization of our optimal control problem is derived analytically and solved numerically using the forward-backward iterative algorithm. Our cost-effectiveness analysis shows that using rapid test and media campaigns partially are the best intervention strategy to reduce the number of infected humans with the minimum cost of intervention. If the intervention is to be implemented as a single intervention, then using solely the rapid test is a more promising and low-cost option in reducing the number of infected individuals vis-a-vis a media campaign to increase social awareness as a single intervention.

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Victor Yiga ◽  
Hasifa Nampala ◽  
Julius Tumwiine

Malaria is one of the world’s most prevalent epidemics. Current control and eradication efforts are being frustrated by rapid changes in climatic factors such as temperature and rainfall. This study is aimed at assessing the impact of temperature and rainfall abundance on the intensity of malaria transmission. A human host-mosquito vector deterministic model which incorporates temperature and rainfall dependent parameters is formulated. The model is analysed for steady states and their stability. The basic reproduction number is obtained using the next-generation method. It was established that the mosquito population depends on a threshold value θ , defined as the number of mosquitoes produced by a female Anopheles mosquito throughout its lifetime, which is governed by temperature and rainfall. The conditions for the stability of the equilibrium points are investigated, and it is shown that there exists a unique endemic equilibrium which is locally and globally asymptotically stable whenever the basic reproduction number exceeds unity. Numerical simulations show that both temperature and rainfall affect the transmission dynamics of malaria; however, temperature has more influence.


Author(s):  
Kingsley Timilehin Akinfe ◽  
Adedapo Chris Loyinmi

We have considered a SEIR-SEI Vector-host mathematical model which captures malaria transmission dynamics, described and built on 7-dimensional nonlinear ordinary differential equations. We compute the basic reproduction number of the model; examine the positivity and boundedness of the model compartments in a region using well established methods viz: Cauchy’s differential theorem, Birkhoff & Rota’s theorem which verifies and reveals the well-posedness, and carrying capacity of the model respectively, the existence of the Disease-Free (DFE) and Endemic (EDE) equilibrium points were determined and examined. Using the Gaussian elimination method and the Routh-hurwitz criterion, we convey stability analyses at DFE and EDE points which indicates that the DFE (malaria-free) and the EDE (epidemic outbreak) point occurs when the basic reproduction number is less than unity (one) and greater than unity (one) respectively. We obtain a solution to the model using the Variational iteration method (VIM) (an unprecedented method) to each population compartments and verify the efficacy, reliability and validity of the proposed method by comparing the respective solutions via tables and combined plots with the computer in-built Runge-kutta-Felhberg of fourth-fifths order (RKF-45). We illustrate the combined plot profiles of each compartment in the model, showing the dynamic behavior of these compartments; then we speculate that VIM is efficient and capable to conduct analysis on Malaria models and other epidemiological models.


2020 ◽  
Vol 1 (2) ◽  
pp. 57-64
Author(s):  
Sitty Oriza Sativa Putri Ahaya ◽  
Emli Rahmi ◽  
Nurwan Nurwan

In this article, we analyze the dynamics of measles transmission model with vaccination via an SVEIR epidemic model. The total population is divided into five compartments, namely the Susceptible, Vaccinated, Exposed, Infected, and Recovered populations. Firstly, we determine the equilibrium points and their local asymptotically stability properties presented by the basic reproduction number R0. It is found that the disease free equilibrium point is locally asymptotically stable if satisfies R01 and the endemic equilibrium point is locally asymptotically stable when R01. We also show the existence of forward bifurcation driven by some parameters that influence the basic reproduction number R0 i.e., the infection rate α or proportion of vaccinated individuals θ. Lastly, some numerical simulations are performed to support our analytical results.


2021 ◽  
Vol 4 (2) ◽  
pp. 125-137
Author(s):  
Dipo Aldila ◽  
Arthana Islamilova ◽  
Sarbaz H.A. Khosnaw ◽  
Bevina D. Handari ◽  
Hengki Tasman

Atherosclerosis is a non-communicable disease (NCDs) which appears when the blood vessels in the human body become thick and stiff. The symptoms range from chest pain, sudden numbness in the arms or legs, temporary loss of vision in one eye, or even kidney failure, which may lead to death. Treatment in cases with severe symptoms requires surgery, in which the number of doctors or hospitals is limited in some countries, especially countries with low health levels. This article aims to propose a mathematical model to understand the impact of limited hospital resources on the success of the control program of atherosclerosis spreads. The model was constructed based on a deterministic model, where the hospitalization rate is defined as a time-dependent saturated function concerning the number of infected individuals. The existence and stability of all possible equilibrium points were shown analytically and numerically, along with the basic reproduction number. Our analysis indicates that our model may exhibit various types of bifurcation phenomena, such as forward bifurcation, backward bifurcation, or a forward bifurcation with hysteresis depending on the value of hospitalization saturation parameter and the infection rate for treated infected individuals. These phenomenon triggers a complex and tricky control program of atherosclerosis. A forward bifurcation with hysteresis auses a possible condition of having more than one stable endemic equilibrium when the basic reproduction number is larger than one, but close to one. The more significant value of hospitalization saturation rate or the infection rate for treated infected individuals increases the possibility of the stable endemic equilibrium point even though the disease-free equilibrium is stable. Furthermore, the Pontryagin Maximum Principle was used to characterize the optimal control problem for our model. Based on the results of our analysis, we conclude that atherosclerosis control interventions should prioritize prevention efforts over endemic reduction scenarios to avoid high intervention costs. In addition, the government also needs to pay great attention to the availability of hospital services for this disease to avoid the dynamic complexity of the spread of atherosclerosis in the field.


Author(s):  
Rodah Jerubet ◽  
George Kimathi ◽  
Mary Wanaina

Mycobacterium tuberculosis is the causative agent of Tuberculosis in humans [1,2]. A mathematical model that explains the transmission of Tuberculosis is developed. The model consists of four compartments; the susceptible humans, the infectious humans, the latently infected humans, and the recovered humans. We conducted an analysis of the disease-free equilibrium and endemic equilibrium points. We also computed the basic reproduction number using the next generation matrix approach. The disease-free equilibrium was found to be asymptotically stable if the reproduction number was less than one. The most sensitive parameter to the basic reproduction number was also determined using sensitivity analysis. Recruitment and contact rate are the most sensitive parameter that contributes to the basic reproduction number. Ordinary Differential Equations is used in the for­mulation of the model equations. The Tuberculosis model is analyzed in order to give a proper account of the impact of its transmission dynamics and the effect of the latent stage in TB transmission. The steady state's solution of the model is investigated. The findings showed that as more people come into contact with infectious individuals, the spread of TB would increase. The latent rate of infection below a critical value makes TB infection to persist.   However, the recovery rate of infectious individuals is an indication that the spread of the disease will reduce with time which could help curb TB transmission. 


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fatima Khadadah ◽  
Abdullah A. Al-Shammari ◽  
Ahmad Alhashemi ◽  
Dari Alhuwail ◽  
Bader Al-Saif ◽  
...  

Abstract Background Aggressive non-pharmaceutical interventions (NPIs) may reduce transmission of SARS-CoV-2. The extent to which these interventions are successful in stopping the spread have not been characterized in countries with distinct socioeconomic groups. We compared the effects of a partial lockdown on disease transmission among Kuwaitis (P1) and non-Kuwaitis (P2) living in Kuwait. Methods We fit a modified metapopulation SEIR transmission model to reported cases stratified by two groups to estimate the impact of a partial lockdown on the effective reproduction number ($$ {\mathcal{R}}_e $$ R e ). We estimated the basic reproduction number ($$ {\mathcal{R}}_0 $$ R 0 ) for the transmission in each group and simulated the potential trajectories of an outbreak from the first recorded case of community transmission until 12 days after the partial lockdown. We estimated $$ {\mathcal{R}}_e $$ R e values of both groups before and after the partial curfew, simulated the effect of these values on the epidemic curves and explored a range of cross-transmission scenarios. Results We estimate $$ {\mathcal{R}}_e $$ R e at 1·08 (95% CI: 1·00–1·26) for P1 and 2·36 (2·03–2·71) for P2. On March 22nd, $$ {\mathcal{R}}_e $$ R e for P1 and P2 are estimated at 1·19 (1·04–1·34) and 1·75 (1·26–2·11) respectively. After the partial curfew had taken effect, $$ {\mathcal{R}}_e $$ R e for P1 dropped modestly to 1·05 (0·82–1·26) but almost doubled for P2 to 2·89 (2·30–3·70). Our simulated epidemic trajectories show that the partial curfew measure greatly reduced and delayed the height of the peak in P1, yet significantly elevated and hastened the peak in P2. Modest cross-transmission between P1 and P2 greatly elevated the height of the peak in P1 and brought it forward in time closer to the peak of P2. Conclusion Our results indicate and quantify how the same lockdown intervention can accentuate disease transmission in some subpopulations while potentially controlling it in others. Any such control may further become compromised in the presence of cross-transmission between subpopulations. Future interventions and policies need to be sensitive to socioeconomic and health disparities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Abdul Kuddus ◽  
M. Mohiuddin ◽  
Azizur Rahman

AbstractAlthough the availability of the measles vaccine, it is still epidemic in many countries globally, including Bangladesh. Eradication of measles needs to keep the basic reproduction number less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}<1)$$ ( i . e . R 0 < 1 ) . This paper investigates a modified (SVEIR) measles compartmental model with double dose vaccination in Bangladesh to simulate the measles prevalence. We perform a dynamical analysis of the resulting system and find that the model contains two equilibrium points: a disease-free equilibrium and an endemic equilibrium. The disease will be died out if the basic reproduction number is less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{ R}}_{0}<1)$$ ( i . e . R 0 < 1 ) , and if greater than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}>1)$$ ( i . e . R 0 > 1 ) epidemic occurs. While using the Routh-Hurwitz criteria, the equilibria are found to be locally asymptotically stable under the former condition on $${\mathrm{R}}_{0}$$ R 0 . The partial rank correlation coefficients (PRCCs), a global sensitivity analysis method is used to compute $${\mathrm{R}}_{0}$$ R 0 and measles prevalence $$\left({\mathrm{I}}^{*}\right)$$ I ∗ with respect to the estimated and fitted model parameters. We found that the transmission rate $$(\upbeta )$$ ( β ) had the most significant influence on measles prevalence. Numerical simulations were carried out to commissions our analytical outcomes. These findings show that how progression rate, transmission rate and double dose vaccination rate affect the dynamics of measles prevalence. The information that we generate from this study may help government and public health professionals in making strategies to deal with the omissions of a measles outbreak and thus control and prevent an epidemic in Bangladesh.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jianping Wang ◽  
Shujing Gao ◽  
Yueli Luo ◽  
Dehui Xie

We analyze the impact of seasonal activity of psyllid on the dynamics of Huanglongbing (HLB) infection. A new model about HLB transmission with Logistic growth in psyllid insect vectors and periodic coefficients has been investigated. It is shown that the global dynamics are determined by the basic reproduction numberR0which is defined through the spectral radius of a linear integral operator. IfR0< 1, then the disease-free periodic solution is globally asymptotically stable and ifR0> 1, then the disease persists. Numerical values of parameters of the model are evaluated taken from the literatures. Furthermore, numerical simulations support our analytical conclusions and the sensitive analysis on the basic reproduction number to the changes of average and amplitude values of the recruitment function of citrus are shown. Finally, some useful comments on controlling the transmission of HLB are given.


2020 ◽  
Vol 10 (22) ◽  
pp. 8296 ◽  
Author(s):  
Malen Etxeberria-Etxaniz ◽  
Santiago Alonso-Quesada ◽  
Manuel De la Sen

This paper investigates a susceptible-exposed-infectious-recovered (SEIR) epidemic model with demography under two vaccination effort strategies. Firstly, the model is investigated under vaccination of newborns, which is fact in a direct action on the recruitment level of the model. Secondly, it is investigated under a periodic impulsive vaccination on the susceptible in the sense that the vaccination impulses are concentrated in practice in very short time intervals around a set of impulsive time instants subject to constant inter-vaccination periods. Both strategies can be adapted, if desired, to the time-varying levels of susceptible in the sense that the control efforts be increased as those susceptible levels increase. The model is discussed in terms of suitable properties like the positivity of the solutions, the existence and allocation of equilibrium points, and stability concerns related to the values of the basic reproduction number. It is proven that the basic reproduction number lies below unity, so that the disease-free equilibrium point is asymptotically stable for larger values of the disease transmission rates under vaccination controls compared to the case of absence of vaccination. It is also proven that the endemic equilibrium point is not reachable if the disease-free one is stable and that the disease-free equilibrium point is unstable if the reproduction number exceeds unity while the endemic equilibrium point is stable. Several numerical results are investigated for both vaccination rules with the option of adapting through ime the corresponding efforts to the levels of susceptibility. Such simulation examples are performed under parameterizations related to the current SARS-COVID 19 pandemic.


2015 ◽  
Vol 23 (03) ◽  
pp. 423-455
Author(s):  
P. MOUOFO TCHINDA ◽  
JEAN JULES TEWA ◽  
BOULECHARD MEWOLI ◽  
SAMUEL BOWONG

In this paper, we investigate the global dynamics of a system of delay differential equations which describes the interaction of hepatitis B virus (HBV) with both liver and blood cells. The model has two distributed time delays describing the time needed for infection of cell and virus replication. We also include the efficiency of drug therapy in inhibiting viral production and the efficiency of drug therapy in blocking new infection. We compute the basic reproduction number and find that increasing delays will decrease the value of the basic reproduction number. We study the sensitivity analysis on the key parameters that drive the disease dynamics in order to determine their relative importance to disease transmission and prevalence. Our analysis reveals that the model exhibits the phenomenon of backward bifurcation (where a stable disease-free equilibrium (DFE) co-exists with a stable endemic equilibrium when the basic reproduction number is less than unity). Numerical simulations are presented to evaluate the impact of time-delays on the prevalence of the disease.


Sign in / Sign up

Export Citation Format

Share Document