scholarly journals Evaluation of Structural Condition of Flexible Pavement Using The AASHTO 1993 and The MEPDG 2008 Method (Case Study: Cipatujah-Kalapagenep-Pangandaran National Road)

2021 ◽  
Vol 28 (3) ◽  
pp. 253-260
Author(s):  
Retna Ayu Kirana Djuhana ◽  
Bambang Sugeng Subagio ◽  
Aine Kusumawati

Abstract Flexible pavement on Cipatujah-Kalapagenep-Pangandaran National Road has a structural damage which marked by potholes and cracks on the pavement caused by excessive load trucks, so the pavement needs an overlay to improve the pavement condition. This analysis using AASHTO 1993 and MEPDG 2008 method. These methods used because the MEPDG 2008 was developed from AASHTO 1993 method, so the output will be more economic. But, the MEPDG 2008 has not applied yet in Indonesia, so the method will be studied to determine the method feasibility to be applied in Indonesia. This research was analyzed with two skenarios of CESAL, four trial thicknesses, and three CBR numbers. The overlay thickness value using the AASHTO 1993 was at 10 cm and 11 cm for scenario 1 and 2, while the overlay thickness using the MEPDG 2008 was at 10 cm for the two scenarios. The result from AASHTO 1993 was chosen because the MEPDG 2008 needs to studied further yet about suitable calibration factor for Indonesian pavement condition. The cause of difference result are structural damage assessment for AASHTO 1993 method based on deflection value from FWD while MEPDG 2008 method based on stresses and strains respond, material characteristics, and local calibration.   Keywords: AASHTO 1993, MEPDG 2008, stress and strain response, FWD deflection value, local calibration factors, overlay thickness. Abstrak Perkerasan lentur jalan Nasional Cipatujah-Kalapagenep-Pangandaran mengalami kerusakan struktural yang ditandai dengan lubang dan retak pada perkerasan badan jalan yang disebabkan oleh truk pengangkut pasir yang memiliki beban berlebih, sehingga diperlukan penambahan tebal lapis tambah pada perkerasan jalan eksisting untuk mengembalikan kondisi kemantapan jalan. Dalam penelitian ini dilakukan analisis terhadap kondisi struktural perkerasan jalan lentur eksisting menggunakan Metoda AASHTO 1993 dan Metoda MEPDG 2008 dengan pertimbangan bahwa MEPDG 2008 merupakan pengembangan dari AASHTO 1993. Namun, Metoda MEPDG 2008 belum diterapkan di Indonesia, maka perlu dilakukan kajian awal untuk mengetahui kelayakan metoda tersebut diterapkan di Indonesia. Analisis ini menggunakan dua skenario nilai CESAL, empat macam tebal dan tiga macam nilai CBR. Berdasarkan hasil analisis, diperoleh tebal overlay menggunakan metoda AASHTO 1993 sebesar 10 cm dan 11 cm untuk skenario 1 dan 2, sedangkan tebal overlay menggunakan metoda MEPDG 2008 diperoleh tebal overlay sebesar 10 cm untuk kedua skenario. Namun dalam penelitian ini dipilih hasil dari metoda AASHTO 1993 dikarenakan MEPDG 2008 masih memerlukan kajian lanjut terkait faktor kalibrasi berdasarkan kondisi perkerasan di Indonesia. Dari penelitian diketahui faktor yang menyebabkan perbedaan hasil adalah Metoda AASHTO 1993 berdasarkan nilai lendutan FWD, sedangkan MEPDG 2008 berdasarkan respon tegangan dan regangan, karakteristik material, dan kalibrasi lokal. Kata-kata kunci: AASHTO 1993, MEPDG 2008, respon tegangan dan regangan, nilai defleksi FWD, faktor kalibrasi lokal, ketebalan lapisan.  

2018 ◽  
Vol 09 (02) ◽  
pp. 139-151
Author(s):  
Hussein Ewadh ◽  
◽  
Raid Almuhanna ◽  
Saja Alasadi ◽  
◽  
...  

2019 ◽  
Vol 26 (4) ◽  
pp. 39-46 ◽  
Author(s):  
Ozgur Ozguc

Abstract Offshore structures are exposed to the risk of damage caused by various types of extreme and accidental events, such as fire, explosion, collision, and dropped objects. These events cause structural damage in the impact area, including yielding of materials, local buckling, and in some cases local failure and penetration. The structural response of an FPSO hull subjected to events involving dropped objects is investigated in this study, and non-linear finite element analyses are carried out using an explicit dynamic code written LS-DYNA software. The scenarios involving dropped objects are based on the impact from the fall of a container and rigid mechanical equipment. Impact analyses of the dropped objects demonstrated that even though some structural members were permanently deformed by drop loads, no failure took place in accordance with the plastic strain criteria, as per NORSOK standards. The findings and insights derived from the present study may be informative in the safe design of floating offshore structures.


2019 ◽  
Vol 258 ◽  
pp. 03019 ◽  
Author(s):  
Rijal Psalmen Hasibuan ◽  
Medis Sejahtera Surbakti

Road is an infrastructure that built to support the movement of the vehicle from one place to another for different purposes. Today, it is often found damage to road infrastructure, both local roads, and arterial roads. Therefore, to keep the pavement condition to remain reliable, in Indonesia has a periodic program by conducting an objective functional inspection of roads regulated by Bina Marga using the International Roughness Index (IRI). However, the IRI examination is not sufficient to represent the actual field condition; it is necessary to perform subjective functional examination by appraising the road one of them is Pavement Condition Index (PCI, ASTM D 6433). This method has been widely applied in some countries because it has many advantages. However, to do this inspection requires considerable cost, then there needs to be a model to get the relationship between these two parameters of the road. The selected case study was arterial road segment in Medan City, that is in Medan inner ring road. Based on the results of the analysis, there is a difference between the functional conditions of PCI and IRI. The equation derived from these two parameters is by exponential regression equation, with equation IRI = 16.07exp-0.26PCI. with R2 of 59% with correlation coefficient value (r) of -0.768. The value of R2 indicates that PCI gives a strong influence on IRI value.


Author(s):  
Chia-Pei Chou ◽  
Chien-Yen Chang

Distress is one of the primary measurements of pavement condition. Thus, in a pavement evaluation program, distress type, severity, and extent should be properly identified. A pavement distress index (PDI) may be calculated by mathematically combining the effects of distresses on pavement conditions. Before the calculation of PDI, each distress attribute must be assigned a weight factor and a severity factor. An analytical algorithm that converts the subjective rating values of distress attributes to a rational weighting scale that provides quantified measurements of the effects of each distress on pavement damage and riding quality is presented. A case study for applying this procedure to the pavements of roadway samples from the Highway Bureau and the National Freeway Bureau in Taiwan also is presented. Through the analysis procedure, it was found that pothole has the largest weight factor (100) and that longitudinal crack has the lowest (49). The severity factors vary from 0.24 to 1.00, depending on the distress type and severity level.


Author(s):  
Y. H. Park ◽  
I. Hijazi

Abstract Damage monitoring in pipes and pressure vessels are important to ensure safety and reliability of these structures. Structural damage monitoring based on an actuator-sensor system is a promising technology to obtain real-time information for structural condition. Since piezoelectric materials in electromechanical systems can detect mechanical responses such stress and deformation as a sensor or perform a defined work as an actuator, piezoelectric actuators/sensors are extensively used in damage detection. In the design of piezoelectric actuators and sensors, it is important to know the properties of the piezoelectric material, in particular, piezoelectric constants to predict its actuation/sensing performance. In this study we determine a piezoelectric constant of ZnO using molecular dynamics simulations. We introduced a shell degree of freedom to the core-only atomic potential to enable polarization of the ion caused by an electric field. This modeling technique allowed for accurate piezoelectric response of the molecular structure.


Sign in / Sign up

Export Citation Format

Share Document