scholarly journals Structural Assessment of the Hull Response of an FPSO Unit to Dropped Objects: A Case Study

2019 ◽  
Vol 26 (4) ◽  
pp. 39-46 ◽  
Author(s):  
Ozgur Ozguc

Abstract Offshore structures are exposed to the risk of damage caused by various types of extreme and accidental events, such as fire, explosion, collision, and dropped objects. These events cause structural damage in the impact area, including yielding of materials, local buckling, and in some cases local failure and penetration. The structural response of an FPSO hull subjected to events involving dropped objects is investigated in this study, and non-linear finite element analyses are carried out using an explicit dynamic code written LS-DYNA software. The scenarios involving dropped objects are based on the impact from the fall of a container and rigid mechanical equipment. Impact analyses of the dropped objects demonstrated that even though some structural members were permanently deformed by drop loads, no failure took place in accordance with the plastic strain criteria, as per NORSOK standards. The findings and insights derived from the present study may be informative in the safe design of floating offshore structures.

2020 ◽  
Vol 94 ◽  
pp. 101992
Author(s):  
I.A. Mosquera-Mosquera ◽  
Marina L. Simão ◽  
Paulo M. Videiro ◽  
Luis V.S. Sagrilo

1984 ◽  
Vol 106 (4) ◽  
pp. 437-443 ◽  
Author(s):  
P. D. Spanos ◽  
V. K. Agarwal

A simple single-degree-of-freedom model of a tension leg platform is used to assess the reliability of the common practice of calculating wave-induced forces at the undisplaced position of offshore structures. This assessment is conducted in conjunction with the Morison equation based modeling of the wave-induced forces on slender structural members. It is shown by numerically integrating the equation of motion that the calculation of wave forces on the displaced position of the structure introduces a steady offset component in the structural response. This is valid for either deterministically or stochastically described wave fields. Several parameter studies are conducted. Furthermore, reliable approximate analytical deterministic and stochastic solution techniques are developed which conform to and, in fact, predict the conclusions drawn from the results of the numerical studies.


2020 ◽  
Vol 10 (4) ◽  
pp. 1503
Author(s):  
Byoungcheon Seo ◽  
Hyunkyoung Shin

Slamming is a very significant phenomenon that occurs in marine structures operating under extreme conditions. Slamming significantly reduces the design life of floating offshore wind turbines, as well as marine structures, and causes structural damage. Thus, the slamming load should be considered sufficiently during the design phase of the structure, and the results of experiments of good quality should be incorporated. The phenomenon of slamming should be analyzed using peak pressure, width, duration, and dynamic loads that depend on the design and natural frequency of the structure. In the case of a slamming experiment, the deadrise angle shows the greatest pressure between 3° to 10°. In this study, pressure values were compared using a model with a deadrise angle of 10° and a cylinder model most commonly used for the fabrication and installation of offshore structures. The peak pressure of the cylindrical model is greater than those of the flat model and the wedge model with a 10° deadrise angle. Pressure and strain were measured using free drops from heights of 1.0 and 1.7 m from the water surface, and the elastic effects were studied accordingly. Also, the peak pressure due to a slamming impact occurs several times depending on the natural frequency of the structure. In order to understand the behavior of the structure against the elastic effect, the second peak in the experimental results was theoretically and experimentally analyzed. The second pressure peak is greater than the first pressure peak due to the elastic behavior effects based on the natural frequency of models used in the slamming test. Also, a single slamming results in several peak pressures and it greatly deteriorates the fatigue strength. Experiments and simulations were carried out to derive the effects of repeated slamming loads on the structure. In the structural design considering the slamming loads, information on the elastic effect of the structure and accumulated loads is very important. This can be an important variable in the design of the floater and can play an important role in assessing the impact on the floater. These results raise questions as to the extent that slamming pressures are replaced with equivalent hydrostatic pressures in most design rules of the recognized certification society.


2018 ◽  
Vol 25 (4) ◽  
pp. 73-82
Author(s):  
Paweł Bielski ◽  
Leszek Samson ◽  
Oskar Wysocki ◽  
Jacek Czyżewicz

Abstract Cold-formed thin-walled sections are prone to local buckling caused by residual stresses, geometrical imperfections and inconsistency of material properties. We present a real case of buckling failure and conduct a numerical and experimental study aimed to identify methods capable of predicting such failures. It is important because designers of structures are getting more FEA-oriented and tend to avoid lengthy procedures of cold-formed structures design. Currently adopted methods are complicated and require patience and caution from a designer which is reasonable in case of the most important structural members but not necessarily so in ordinary design. Since it is important, we offer an insight into several FEA and manual methods which were sufficient to predict the failure while remaining fairly simple. Using a non-uniform partial safety factor was still necessary. We hope that this paper will be of interest for people performing a lot of routine analyses and worrying about reliability of their computations.


2019 ◽  
Vol 13 (1) ◽  
pp. 12-26 ◽  
Author(s):  
F. Barbagallo ◽  
M. Bosco ◽  
A. Ghersi ◽  
E.M. Marino ◽  
P.P. Rossi

Background:Structural members subjected to strong earthquakes undergo stiffness and strength degradation. To predict accurately the seismic behaviour of structures, nonlinear static methods of analysis have been developed in scientific literature. Generally, nonlinear static methods perform the pushover analysis by applying a monotonic lateral load. However, every earthquake input is characterized by several repeated loads with reverse in signs and the strength and deformation capacities of structures are generally related to the cumulative damage. This aspect is neglected by the conventional monotonic approaches, which tend to overestimate the strength and stiffness of structural members.Objective:This paper aims to investigate the possibility that the Cyclic Pushover Analysis (CPA) may be used as a tool to assess the seismic behaviour of structures. During the CPA, the structure is subjected to a distribution of horizontal forces that is reversed in sign when predefined peak displacements of the reference node are attained. This process repeats in cycles previously determined in a loading protocol.Methods:To investigate the effectiveness of the CPA in predicting the structural response, a steel moment resisting frame is designed as a case study building. A numerical model of this frame is developed in OpenSees. To examine the influence of the loading protocols on the seismic response, the CPA is run following the ATC-24 and the SAC protocols. Additionally, the seismic demand of the case study frame is determined by a Monotonic Pushover Analysis (MPA) and by Incremental nonlinear Dynamic Analysis (IDA).Results and Conclusions:The following results are obtained:• Despite the differences between the SAC and the ATC-24 loading protocols, the CPA applied according to those two protocols led to almost the same structural response of the case study frame.• The CPA showed the capability of catching the stiffness and strength degradation, which is otherwise neglected by the MPA. In fact, given a base shear or peak ground acceleration, the CPA leads to the estimation of larger displacement demands compared to the MPA.• During long (or medium) duration earthquakes, the CPA was necessary to estimate accurately the response of the structure. In fact, at a PGA equal to 1 g, the CPA estimated the top displacement demand with an error lower than 10%, while the MPA underestimated it by 18%.• The importance of considering the cyclic deterioration is shown at local level by the damage indexes of the frame. In the case of long earthquakes, given a top displacement of 600 mm (corresponding to a PGA equal to 1 g), the CPA estimated the damage indexes with an error equal to 12%.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Ozgur Ozguc

The protection structures for the Floating Production Storage and Offloading (FPSO) caissons should be sufficiently strong to avoid contact with the caisson pipes even when the protection structure is damaged by the impact of the accompanying vessels. Collision events of protectors of appurtenances such as risers, mooring lines, and seawater lift caissons with supply vessel may cause structural damage to protection structures and even to the appurtenance structures and hull structures. This study introduces the collision impact analyses on three protective structures of FPSO against striking supply vessel whose displacement is 7,500 tons. The capacity of protection structures in view of strain energy has been assessed with simple beam FE models. The striking vessel has been modelled as a small rigid body, and impact simulation has been performed including material and geometric nonlinearities where ABAQUS Explicit tool, which is a commercial explicit code, has been used for non-linear collision analyses with protection structures. The results from the current work will be a guide to understanding the impact response of offshore structures and evaluation approaches, and will provide useful indications for the FPSO hull caisson protection design and operation. In addition, the findings obtained by the current study will be informative in the safe design of FPSO facilities.


Author(s):  
Shubham N. Dadgal ◽  
Shrikant Solanke

In modern days for structures in coastal areas it has been observed that the premature structural failures are occurs due to corrosion of the reinforcements of the designed structural member. The corrosion causes the structural damage which in turn leads to reduction in the bearing capacity of the concerned structural members. The aim of this study was to study the effect of partial replacement of fly ash to minimize the corrosion effect. Beams were designed and corroded by using artificial method known accelerated corrosion method. The beams were then tested for flexural and bond strength. Also the weight loss of the reinforced bars was been determined using electrical resistivity method. The fly ash will replace by 10% and 15%.The strength will calculate at varying percentage of corrosion at 10% and 15%. Beams will cast at M25 grade concrete. The flexural strength will test by using UTM and the bond strength will calculate using pullout test.


Sign in / Sign up

Export Citation Format

Share Document