scholarly journals Impedimetric characterization of human blood using three-electrode based ECIS devices

2019 ◽  
Vol 3 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Rangadhar Pradhan ◽  
Analava Mitra ◽  
Soumen Das

Abstract In this study, three-electrode based electric cell-substrate impedance sensing (ECIS) devices were used to study the electrical properties of blood and its constituents using electrochemical impedance spectroscopy. The three-electrode based ECIS devices were fabricated by using micromachining technology with varying sizes for working, reference and counter electrodes. The blood and its constituents such as serum, plasma, and red blood cells (RBCs) were prepared by conventional methods and stored for impedance measurement using fabricated microdevices. Equivalent circuits for blood, serum, plasma and RBCs were proposed using the software package ZSimpWin to validate the experimental data. The proposed equivalent circuit models of blood and its components have excellent agreement up to a frequency of 1 MHz. It is evident from the experimental results that blood and its components have specific impedance signatures that decrease with the increase of frequency. Blood shows higher impedance than the other samples in the lower frequency range (<50 kHz). It was also found that above 50 kHz, the impedance value of RBCs is nearly the same as whole blood. The impedance of serum and plasma steadily decreases with the increase of frequency up to 100 kHz and flattens out after that. The minimum impedance value achieved for serum and plasma is much less than the value obtained for whole blood.


2018 ◽  
Vol 12 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Il-Hwan Park ◽  
Yeonhee Hong ◽  
Hee-Sook Jun ◽  
Eou-Sik Cho ◽  
Sungbo Cho


Author(s):  
H. R. Siddiquei ◽  
A. N. Nordin ◽  
M. I. Ibrahimy ◽  
M. A. Arifin ◽  
N. H. Sulong ◽  
...  


2011 ◽  
Vol 131 (1) ◽  
pp. 26-34 ◽  
Author(s):  
Naoki Takeda ◽  
Takamichi Hirata ◽  
Masahiro Akiya


2021 ◽  
Vol 2 (1) ◽  
pp. 100311
Author(s):  
Daniella C. Terenzi ◽  
Ehab Bakbak ◽  
Justin Z. Trac ◽  
Mohammad Al-Omran ◽  
Adrian Quan ◽  
...  


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4344
Author(s):  
Merve Uca ◽  
Ece Eksin ◽  
Yasemin Erac ◽  
Arzum Erdem

Hydroxyapatite nanoparticles (HaP) and ionic liquid (IL) modified pencil graphite electrodes (PGEs) are newly developed in this assay. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and cyclic voltammetry (CV) were applied to examine the microscopic and electrochemical characterization of HaP and IL-modified biosensors. The interaction of curcumin with nucleic acids and polymerase chain reaction (PCR) samples was investigated by measuring the changes at the oxidation signals of both curcumin and guanine by differential pulse voltammetry (DPV) technique. The optimization of curcumin concentration, DNA concentration, and the interaction time was performed. The interaction of curcumin with PCR samples was also investigated by gel electrophoresis.



2020 ◽  
Vol 11 (3) ◽  
pp. 364-364
Author(s):  
Maciej Ratynski ◽  
Bartosz Hamankiewicz ◽  
Michał Krajewski ◽  
Maciej Boczar ◽  
Dominika A. Buchberger ◽  
...  


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 130
Author(s):  
Carlos Corona-García ◽  
Alejandro Onchi ◽  
Arlette A. Santiago ◽  
Araceli Martínez ◽  
Daniella Esperanza Pacheco-Catalán ◽  
...  

The future availability of synthetic polymers is compromised due to the continuous depletion of fossil reserves; thus, the quest for sustainable and eco-friendly specialty polymers is of the utmost importance to ensure our lifestyle. In this regard, this study reports on the use of oleic acid as a renewable source to develop new ionomers intended for proton exchange membranes. Firstly, the cross-metathesis of oleic acid was conducted to yield a renewable and unsaturated long-chain aliphatic dicarboxylic acid, which was further subjected to polycondensation reactions with two aromatic diamines, 4,4′-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline and 4,4′-diamino-2,2′-stilbenedisulfonic acid, as comonomers for the synthesis of a series of partially renewable aromatic-aliphatic polyamides with an increasing degree of sulfonation (DS). The polymer chemical structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F NMR) spectroscopy, which revealed that the DS was effectively tailored by adjusting the feed molar ratio of the diamines. Next, we performed a study involving the ion exchange capacity, the water uptake, and the proton conductivity in membranes prepared from these partially renewable long-chain polyamides, along with a thorough characterization of the thermomechanical and physical properties. The highest value of the proton conductivity determined by electrochemical impedance spectroscopy (EIS) was found to be 1.55 mS cm−1 at 30 °C after activation of the polymer membrane.



Sign in / Sign up

Export Citation Format

Share Document