scholarly journals Assessment of The Biomass Potential Recovered from Oil Palm Plantation and Crude Palm Oil Production in Indonesia

2014 ◽  
Vol 42 (3) ◽  
pp. 231-243 ◽  
Author(s):  
Byoung-Jun Ahn ◽  
Gyu-Seoung Han ◽  
Don-Ha Choi ◽  
Sung-Taig Cho ◽  
Soo-Min Lee
Author(s):  
Heinz Stichnothe ◽  
Cécile Bessou

Growing demand for palm oil is driven by increasing human population, income growth as well as biodiesel stimulation programs. Covering an area of over ten million ha in Indonesia, palm oil production is also one of the most important sources of crop residues while processing generates large amounts of wastewater. Cultivation and processing of this crop are considered as potentially large sources of emissions. Improving environmental impacts of the palm oil production can help to reduce existing emissions while increasing yield and generating surplus energy and farm income. However, area expansion for oil palm plantation is perceived as  closely linked to illegal logging, deforestation and diminishing biodiversity. Apart from ensuring sustainable land use change, the use of residues is the most important criterion in ensuring sustainable palm oil. It is important to note that there are trade-offs (e.g. between maximizing bio energy production, reducing environmental impacts other than greenhouse gases (GHG), and sustaining soil fertility). Nitrogen (N) losses in palm oil production systems are a major environmental and economic issue. Unfortunately,  there is little comprehensive knowledge on how to calculate N-budgets in oil palm plantation in order to optimize fertilization, taking into account N-leaching and N-gaseous emissions. Land use, soil-carbon, N-emissions and biodiversity are key aspects of life cycle assessment (LCA) of palm oil production systems and they pose a number of methodological questions.


Author(s):  
Dimas Satria ◽  
Poningsih Poningsih ◽  
Widodo Saputra

The purpose of this paper is to create an expert system to detect oil palm plant diseases in order to help farmers / companies in providing accurate information about the diseases of oil palm plants and how to overcome them and to help reduce the risk of decreasing palm oil production. This system is designed to mimic the expertise of an expert who is able to detect diseases that attack oil palm plants. The method used is forward chaining that is starting from a set of data and proving a fact by describing the level of confidence and uncertainty found in a hypothesis. The results of this study are to diagnose diseases of oil palm plants and their computerization using web programming languages.


2018 ◽  
Vol 13 (3) ◽  
pp. 034037 ◽  
Author(s):  
E Benami ◽  
L M Curran ◽  
M Cochrane ◽  
A Venturieri ◽  
R Franco ◽  
...  

2019 ◽  
Vol 17 ◽  
pp. 161-175 ◽  
Author(s):  
Mohan Munasinghe ◽  
Priyangi Jayasinghe ◽  
Yvani Deraniyagala ◽  
Valente José Matlaba ◽  
Jorge Filipe dos Santos ◽  
...  

Author(s):  
Rui Alberto Gomes Junior ◽  
Alessandra Ferraiolo de Freitas ◽  
Raimundo Nonato Vieira da Cunha ◽  
Antônio José de Abreu Pina ◽  
Higo Otávio Brochado Campos ◽  
...  

Abstract The objective of this work was to estimate the genetic parameters, correlations, and selection gains for the oil production of interspecific hybrids progenies between American oil palm, of ‘Manicoré’ origin, and oil palm, of ‘La Mé’ origin. Thirty-nine progenies were evaluated from the sixth to the ninth year after planting, for the productivity of fresh fruit bunches (PROD_FFB), oil content in the bunch (OCB), and palm oil productivity (PROD_OP). The genetic parameters and gains from direct (GDS) and indirect (GIS) selection were estimated for PROD_OP. High values of heritability for the CVg/CVe ratio indicated favorable conditions for the selection. With the selection of 20% of the progenies (selection in both sexes), the following estimates were obtained: 11.15% GDS for PROD_OP, 9.1% GIS for OCB, and 8.1% GIS for PROD_FFB. The PROD_OP of the progenies was of 6,175, 6,057, and 5,995 kg ha-1 per year with GDS and GIS for OCB and PROD_FFB, respectively. The restricted selection of the LM2T male genitor offspring resulted in 5.1% estimated GSD and in a mean of 5,800 kg ha-1 per year for PROD_OP. Selection gains for PROD_OP can be achieved immediately through the selection restricted to oil palm male genitors, and, in the medium and long term, through the interspecific reciprocal recurrent selection between American oil palm and oil palm populations.


Author(s):  
Nuruly Myzabella ◽  
Lin Fritschi ◽  
Nick Merdith ◽  
Sonia El-Zaemey ◽  
HuiJun Chih ◽  
...  

Background: The palm oil industry is the largest contributor to global production of oils and fats. Indonesia and Malaysia are the largest producers of palm oil. More than a million workers are employed in this industry, yet there is a lack of information on their occupational health and safety. Objective: To identify and summarize occupational hazards among oil palm plantation workers. Methods: A search was carried out in June 2018 in PubMed, Web of Science, Scopus, and Ovid. Relevant publications were identified by a systematic search of four databases and relevant journals. Publications were included if they examined occupational hazards in oil palm plantation workers. Results: 941 publications were identified; of these, 25 studies were found eligible to be included in the final review. Of the 25 studies examined, 19 were conducted in Malaysia, 2 in Costa Rica, and one each in Ghana, Indonesia, Myanmar, Papua New Guinea, and Cameroon. Oil palm plantation workers were found to be at risk of musculoskeletal conditions, injuries, psychosocial disorders, and infectious diseases such as malaria and leptospirosis. In addition, they have potential exposure to paraquat and other pesticides. Conclusion: In light of the potential of palm oil for use as a biofuel, this is an industry with strong growth potential. The workers are exposed to various occupational hazards. Further research and interventions are necessary to improve the working conditions of this already vast and growing workforce.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 95-104
Author(s):  
Mohd Ismail Abd Aziz ◽  
Noryanti Nasir ◽  
Akbar Banitalebi

Successful palm oil plantation should have high returns profit, clean and environmental friendly. Since oil palm trees have a long life and it takes years to be fully grown, controlling the felling rate of the palm oil trees is a fundamental challenge. It needs to be addressed in order to maximize oil production. However, a good arrangement of the felling palm oil trees may still affect the amount of carbon absorption. The objective of this study is to develop an optimal felling model of the palm oil plantation system taking into account both oil production and carbon absorption. The model facilitates in providing the optimal control of felling rate that results in maximizing both oil production and carbon absorption. With this aim, the model is formulated considering palm oil biomass, carbon absorption rate, oil production rate and the average prices of carbon and oil palm. A set of real data is used to estimate the parameters of the model and numerical simulation is conducted to highlight the application of the proposed model. The resulting parameter estimation is solved that leads to an optimal control of felling rate problem.


Author(s):  
Arif Ridho Lubis ◽  
Santi Prayudani ◽  
Yulia Fatmi ◽  
Al-Khowarizmi ◽  
Julham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document