scholarly journals Quality assessment of atmospheric surface fields over the Baltic Sea from an ensemble of regional climate model simulations with respect to ocean dynamics**The work presented in this study was jointly funded by the Swedish Environmental Protection Agency (SEPA), the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS), and the European Commission within the projects ECOSUPPORT (Advanced modelling tool for scenarios of the Baltic Sea ECOsystem to SUPPORT decision making, ref. no. 08/381), AMBER (Assessment and Modelling Baltic Ecosystem Response, ref. no. 08/390) and INFLOW (Holocene saline water inflow changes into the Baltic Sea, ecosystem responses and future scenarios, ref. no. 2008–1885). All three projects are part of the BONUS+program (http://www.bonusportal.org).

Oceanologia ◽  
2011 ◽  
Vol 53 ◽  
pp. 193-227 ◽  
Author(s):  
H.E. Markus Meier ◽  
Anders Höglund ◽  
Ralf Döscher ◽  
Helén Andersson ◽  
Ulrike Löptien ◽  
...  
2016 ◽  
Author(s):  
Julia Jeworrek ◽  
Lichuan Wu ◽  
Christian Dieterich ◽  
Anna Rutgersson

Abstract. Convective snow bands develop in response to a cold air outbreak from the continent over the open water surface of lakes or seas. The comparatively warm water body triggers shallow convection due to increased heat and moisture fluxes. Strong winds can align with this convection into wind-parallel cloud bands, which appear stationary as the wind direction remains consistent for the time period of the snow band event, delivering enduring snow precipitation at the approaching coast. The statistical analysis of a dataset from an 11-year high resolution atmospheric regional climate model (RCA4) indicated 4 to 7 days a year of moderate to highly favorable conditions for the development of convective snow bands in the Baltic Sea region. The heaviest and most frequent lake effect snow was affecting the regions of Gävle and Västervik (along the Swedish east coast) as well as Gdansk (along the Polish coast). However, the hourly precipitation rate is often higher in Gävle than in the Västervik region. Two case studies comparing five different RCA4 model setups have shown that the Rossby Centre atmospheric regional climate model RCA4 provides a superior representation of the sea surface with more accurate SST values when coupled to the ice-ocean model NEMO as opposed to the forcing by the ERA-40 reanalysis data. The refinement of the resolution of the atmospheric model component lead especially in horizontal direction to significant improvement on the representation of the mesoscale circulation process as well as the local precipitation rate and area by the model.


2021 ◽  
Author(s):  
H. E. Markus Meier ◽  
Christian Dieterich ◽  
Matthias Gröger ◽  
Cyril Dutheil ◽  
Florian Börgel ◽  
...  

Abstract. Recently performed scenario simulations for the Baltic Sea including marine biogeochemistry were analyzed and compared with earlier published projections. The Baltic Sea, located in northern Europe, is a semi-enclosed, shallow and tide-less sea with seasonal sea ice cover in its northern sub-basins and a long residence time causing oxygen depletion in the bottom water of the southern sub-basins. With the help of dynamical downscaling using a regional coupled atmosphere-ocean climate model, four global Earth System Models were regionalized. As the regional climate model does not include components for the terrestrial and marine biogeochemistry, an additional catchment and coupled physical-biogeochemical model for the Baltic Sea were used. In addition to previous scenario simulations, the impact of various water level scenarios was examined as well. The projections suggest higher water temperatures, a shallower mixed layer with sharper thermocline during summer, reduced sea ice cover and intensified mixing in the northern Baltic Sea during winter compared to present climate. Both frequency and duration of marine heat waves would increase significantly, in particular in the coastal zone of the southern Baltic Sea (except in regions with frequent upwelling). Due to the uncertainties in projections of the regional wind, water cycle and global sea level rise, robust and statistically significant salinity changes cannot be identified. The impact of changing climate on biogeochemical cycling is considerable but in any case smaller than the impact of plausible nutrient input changes. Implementing the proposed Baltic Sea Action Plan, a nutrient input abatement plan for the entire catchment area, would result in a significantly improved ecological status of the Baltic Sea and reduced hypoxic area also in future climate, strengthening the resilience of the Baltic Sea against anticipated future climate change. While our findings about changes in variables of the heat cycle mainly confirm earlier scenario simulations, earlier projections for salinity and biogeochemical cycles differ substantially because of different experimental setups and different bioavailable nutrient input scenarios. During the time in which this paper was prepared, shortly before submission, Christian Dieterich passed away (1964–2021). This sad event marked the end of the life of a distinguished oceanographer and climate scientist who made important contributions to the climate modeling of the Baltic Sea, North Sea and North Atlantic regions. 


2012 ◽  
Vol 8 (5) ◽  
pp. 1419-1433 ◽  
Author(s):  
S. Schimanke ◽  
H. E. M. Meier ◽  
E. Kjellström ◽  
G. Strandberg ◽  
R. Hordoir

Abstract. Variability and long-term climate change in the Baltic Sea region is investigated for the pre-industrial period of the last millennium. For the first time dynamical downscaling covering the complete millennium is conducted with a regional climate model in this area. As a result of changing external forcing conditions, the model simulation shows warm conditions in the first centuries followed by a gradual cooling until ca. 1700 before temperature increases in the last centuries. This long-term evolution, with a Medieval Climate Anomaly (MCA) and a Little Ice Age (LIA), is in broad agreement with proxy-based reconstructions. However, the timing of warm and cold events is not captured at all times. We show that the regional response to the global climate anomalies is to a strong degree modified by the large-scale circulation in the model. In particular, we find that a positive phase of the North Atlantic Oscillation (NAO) simulated during MCA contributes to enhancing winter temperatures and precipitation in the region while a negative NAO index in the LIA reduces them. In a second step, the regional ocean model (RCO-SCOBI) is used to investigate the impact of atmospheric changes onto the Baltic Sea for two 100 yr time slices representing the MCA and the LIA. Besides the warming of the Baltic Sea, the water becomes fresher at all levels during the MCA. This is induced by increased runoff and stronger westerly winds. Moreover, the oxygen concentrations in the deep layers are slightly reduced during the MCA. Additional sensitivity studies are conducted to investigate the impact of even higher temperatures and increased nutrient loads. The presented experiments suggest that changing nutrient loads may be more important determining oxygen depletion than changes in temperature or dynamic feedbacks.


2021 ◽  
Author(s):  
Ole B. Christensen ◽  
Erik Kjellström ◽  
Christian Dieterich ◽  
Matthias Gröger ◽  
H. E. Markus Meier

Abstract. The Baltic Sea Region is very sensitive to climate change; it is a region with spatially varying climate and diverse ecosystems, but also under pressure due to high population in large parts of the area. Climate change impacts could easily exacerbate other anthropogenic stressors such as biodiversity stress from society and eutrophication of the Baltic Sea considerably. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. In this review paper, we will concentrate on a presentation of recent climate projections from both atmosphere-only and coupled atmosphere-ocean regional climate models. The recent regional climate model projections strengthen the picture from previous assessments. This includes a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the southern half during summer. Consequently, the new results lend more credibility to estimates of uncertainties and robust features of future climate change. Furthermore, the larger number of scenarios gives opportunities to better address impacts of mitigation measures. The coupled atmosphere-ocean model locally modifies the climate change signal relative to that in the stand-alone atmosphere regional climate model. Differences are largest in areas where the coupled system arrives at different sea-surface temperatures and sea-ice conditions.


2021 ◽  
Author(s):  
Matthias Gröger ◽  
Christian Dieterich ◽  
Jari Haapala ◽  
Ha Thi Minh Ho-Hagemann ◽  
Stefan Hagemann ◽  
...  

Abstract. Non-linear responses to externally forced climate change are known to dampen or amplify the local climate impact due to complex cross compartmental feedback loops in the earth system. These feedbacks are less well represented in traditional standalone atmosphere and ocean models on which many of today's regional climate assessments rely on (e.g. EuroCordex, NOSCCA, BACC II). This promotes the development of regional climate models for the Baltic Sea region by coupling different compartments of the earth system into more comprehensive models. Coupled models more realistically represent feedback loops than the information imposed into the region by using prescribed boundary conditions, and thus, permit a higher degree of freedom. In the past, several coupled model systems have been developed for Europe and the Baltic Sea region. This article reviews recent progress of model systems that allow two way communication between atmosphere and ocean models, models for the land surface including the terrestrial biosphere, as well as wave models at the air sea interface and hydrology models for water cycle closure. However, several processes that have so far mostly been realized by one way coupling such as marine biogeochemistry, nutrient cycling and atmospheric chemistry (e.g. aerosols) are not considered here.Compared to uncoupled standalone models, coupled earth system models models can modify mean near surface air temperatures locally up to several degrees compared to their standalone atmospheric counterparts using prescribed surface boundary conditions. Over open ocean areas, the representation of small scale oceanic processes such as vertical mixing, and sea ice dynamics appear essential to accurately resolve the air sea heat exchange in the Baltic Sea region and can only be provided by online coupled high resolution ocean models. In addition, the coupling of wave models at the ocean-atmosphere interface allows a more explicit formulation of small-scale to microphysical processes with local feedbacks to water temperature and large scale processes such as oceanic upwelling. Over land, important climate feedbacks arise from dynamical terrestrial vegetation changes as well as the implementation of land use scenarios and afforestation/deforestation that further alter surface albedo, roughness length and evapotranspiration. Furthermore, a good representation of surface temperatures and roughness length over open sea and land areas is critical for the representation of climatic extremes like e.g. heavy precipitation, storms, or tropical nights, and appear to be sensitive to coupling.For the present-day climate, many coupled atmosphere-ocean and atmosphere-land surface models demonstrate added value with respect to single climate variables in particular when low quality boundary data were used in the respective standalone model. This makes coupled models a prospective tool for downscaling climate change scenarios from global climate models because these models often have large biases on the regional scale. However, the coupling of hydrology models for closing the water cycle remains problematic as the accuracy of precipitation provided by the atmosphere models is in most cases insufficient to realistically simulate the runoff to the Baltic Sea without bias adjustments.Many regional standalone ocean and atmosphere models are tuned to well represent present day climatologies rather than accurately simulate climate change. More research is necessary about how the regional climate sensitivity (e.g. the models’ response to a given change in global mean temperature) is affected by coupling and how the spread is altered in multi-model and multi-scenario ensembles of coupled models compared to uncoupled ones.


2021 ◽  
Vol 12 (3) ◽  
pp. 939-973
Author(s):  
Matthias Gröger ◽  
Christian Dieterich ◽  
Jari Haapala ◽  
Ha Thi Minh Ho-Hagemann ◽  
Stefan Hagemann ◽  
...  

Abstract. Nonlinear responses to externally forced climate change are known to dampen or amplify the local climate impact due to complex cross-compartmental feedback loops in the Earth system. These feedbacks are less well represented in the traditional stand-alone atmosphere and ocean models on which many of today's regional climate assessments rely (e.g., EURO-CORDEX, NOSCCA and BACC II). This has promoted the development of regional climate models for the Baltic Sea region by coupling different compartments of the Earth system into more comprehensive models. Coupled models more realistically represent feedback loops than the information imposed on the region by prescribed boundary conditions and, thus, permit more degrees of freedom. In the past, several coupled model systems have been developed for Europe and the Baltic Sea region. This article reviews recent progress on model systems that allow two-way communication between atmosphere and ocean models; models for the land surface, including the terrestrial biosphere; and wave models at the air–sea interface and hydrology models for water cycle closure. However, several processes that have mostly been realized by one-way coupling to date, such as marine biogeochemistry, nutrient cycling and atmospheric chemistry (e.g., aerosols), are not considered here. In contrast to uncoupled stand-alone models, coupled Earth system models can modify mean near-surface air temperatures locally by up to several degrees compared with their stand-alone atmospheric counterparts using prescribed surface boundary conditions. The representation of small-scale oceanic processes, such as vertical mixing and sea-ice dynamics, appears essential to accurately resolve the air–sea heat exchange over the Baltic Sea, and these parameters can only be provided by online coupled high-resolution ocean models. In addition, the coupling of wave models at the ocean–atmosphere interface allows for a more explicit formulation of small-scale to microphysical processes with local feedbacks to water temperature and large-scale processes such as oceanic upwelling. Over land, important climate feedbacks arise from dynamical terrestrial vegetation changes as well as the implementation of land-use scenarios and afforestation/deforestation that further alter surface albedo, roughness length and evapotranspiration. Furthermore, a good representation of surface temperatures and roughness length over open sea and land areas is critical for the representation of climatic extremes such as heavy precipitation, storms, or tropical nights (defined as nights where the daily minimum temperature does not fall below 20 ∘C), and these parameters appear to be sensitive to coupling. For the present-day climate, many coupled atmosphere–ocean and atmosphere–land surface models have demonstrated the added value of single climate variables, in particular when low-quality boundary data were used in the respective stand-alone model. This makes coupled models a prospective tool for downscaling climate change scenarios from global climate models because these models often have large biases on the regional scale. However, the coupling of hydrology models to close the water cycle remains problematic, as the accuracy of precipitation provided by atmosphere models is, in most cases, insufficient to realistically simulate the runoff to the Baltic Sea without bias adjustments. Many regional stand-alone ocean and atmosphere models are tuned to suitably represent present-day climatologies rather than to accurately simulate climate change. Therefore, more research is required into how the regional climate sensitivity (e.g., the models' response to a given change in global mean temperature) is affected by coupling and how the spread is altered in multi-model and multi-scenario ensembles of coupled models compared with uncoupled ones.


Author(s):  
Erik Kjellström ◽  
Ole Bøssing Christensen

Regional climate models (RCMs) are commonly used to provide detailed regional to local information for climate change assessments, impact studies, and work on climate change adaptation. The Baltic Sea region is well suited for RCM evaluation due to its complexity and good availability of observations. Evaluation of RCM performance over the Baltic Sea region suggests that: • Given appropriate boundary conditions, RCMs can reproduce many aspects of the climate in the Baltic Sea region. • High resolution improves the ability of RCMs to simulate significant processes in a realistic way. • When forced by global climate models (GCMs) with errors in their representation of the large-scale atmospheric circulation and/or sea surface conditions, performance of RCMs deteriorates. • Compared to GCMs, RCMs can add value on the regional scale, related to both the atmosphere and other parts of the climate system, such as the Baltic Sea, if appropriate coupled regional model systems are used. Future directions for regional climate modeling in the Baltic Sea region would involve testing and applying even more high-resolution, convection permitting, models to generally better represent climate features like heavy precipitation extremes. Also, phenomena more specific to the Baltic Sea region are expected to benefit from higher resolution (these include, for example, convective snowbands over the sea in winter). Continued work on better describing the fully coupled regional climate system involving the atmosphere and its interaction with the sea surface and land areas is also foreseen as beneficial. In this respect, atmospheric aerosols are important components that deserve more attention.


2019 ◽  
Author(s):  
Christian Dieterich ◽  
Matthias Gröger ◽  
Lars Arneborg ◽  
Helén C. Andersson

Abstract. An ensemble of regional climate change scenarios for the Baltic Sea is validated and analyzed with respect to extreme sea levels (ESLs) in the recent past. The ERA40 reanalysis and five Coupled Model Intercomparison Project Phase 5 (CMIP5) global general circulation models (GCMs) have been downscaled with the coupled atmosphere-ice-ocean model RCA4-NEMO. Validation of 100-year return levels against observational estimates along the Swedish coast shows that the model estimates are within the 95 % confidence limits for most stations, except those on the west coast. The ensemble mean 100-year return levels turns out to be the best estimator with biases of less than 10 cm. The ensemble spread includes the 100-year return levels based on observations. A series of sensitivity studies explores how the choice of different parameterizations, open boundary conditions and atmospheric forcing affects the estimates of 100-year return levels. A small ensemble of different regional climate models (RCMs) forced with ERA40 shows the highest uncertainty in ESLs in the southwestern Baltic Sea and in the northeastern part of the Bothnian Bay. Also the Skagerrak, Gulf of Finland and Gulf of Riga are sensitive to the choice of the RCM. A second ensemble of one RCM forced with different GCMs uncovers a lower sensitivity of ESLs against the variance introduced by different GCMs. The uncertainty in the estimates of 100-year return levels introduced by GCMs ranges from 20 cm to 40 cm at different stations. It is of similar size as the 95 % confidence limits of 100-year return levels from observational records.


Sign in / Sign up

Export Citation Format

Share Document