scholarly journals Effect of cumin essential oil usage on fermentation quality, aerobic stability and in vitro digetibility of alfalfa silage

2018 ◽  
Vol 31 (8) ◽  
pp. 1252-1258 ◽  
Author(s):  
Aslı Turan ◽  
Sibel Soycan Önenç
2021 ◽  
Vol 51 (3) ◽  
pp. 371-377
Author(s):  
M. Besharati ◽  
V. Palangi ◽  
V. Ghozalpour ◽  
Z. Nemati ◽  
T. Ayaşan

This study assessed the effects of the additions of an essential oil (EO), composed of ricinoleic acid, cardol, cardanol, and apple pomace, on fermentation quality and aerobic stability of alfalfa silages. The experimental treatments consisted of T1) alfalfa (control), T2) alfalfa with EO, T3) alfalfa (75%) with apple pomace (25%), T4) alfalfa (75%) with apple pomace (25%) and EO, T5) alfalfa (50%) with apple pomace (50%), T6) alfalfa (50%) with apple pomace (50%) and EO, T7) alfalfa (25%) with apple pomace (75%), and T8) alfalfa (25%) with apple pomace (75%) and EO. The addition of apple pomace decreased the silage pH compared with the control (P <0.01). Apple pomace at 25% level increased the total volatile fatty acid (iVFA) content (P <0.05). Essential oil (EO) decreased tVFA and increased dry matter (DM) content 90 days after ensiling (P <0.01). Apple pomace decreased ammonia (N-NH3), crude protein (CP), and crude ash (CA) content and increased the amounts of neutral detergent fibre (NDF) and acid detergent fibre (ADF) (P <0.01). Essential oil and apple pomace (level 75%) increased effective digestibility (P <0.05). Apple pomace decreased aerobic stability and the addition of EO increased aerobic stability (P <0.05). Thus, use of apple pomace as a source of fermentable carbohydrate and/or the addition of EO in the preparation of high-quality alfalfa silage is recommended to offset its high buffering capacity and low carbohydrate content.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2229
Author(s):  
Yixiao Xie ◽  
Shengyang Xu ◽  
Wenqi Li ◽  
Musen Wang ◽  
Zhe Wu ◽  
...  

This study aimed to evaluate the effect of the application of an inoculant and a preservative on the fermentation quality, in vitro digestibility, and aerobic stability of alfalfa silage-based fermented total mixed ration (TMR). The TMR was ensiled with (1) no additives (control), (2) Lactobacillus plantarum (LP), or (3) potassium sorbate (PS). The V-scores of all silages were higher than 80 points during the 30 days of ensiling. The addition of LP and PS had no effects on the in vitro parameters, such as in vitro digestibility and in vitro gas production (p > 0.05). LP-treated silage showed similar fermentation quality and comparable aerobic stability to the control (110 h). The LP only decreased the ammonia nitrogen (NH3-N) content (p < 0.05) during ensiling. The PS significantly increased the pH of TMR silages (p < 0.05). Meanwhile, the addition of PS improved the aerobic stability (>162 h) of TMR silage, indicated by the higher water-soluble carbohydrate content and lower NH3-N content in comparison with those in the control after aerobic exposure (p < 0.05). The improvement in fermentation quality is extremely small in terms of applying LP in TMR silage based on a large percentage of other silage ingredients. The PS is effective in conserving unpacked TMR silage and showed the potential to reduce the risk of ruminal acidosis in livestock.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Yixiao Xie ◽  
Jinze Bao ◽  
Wenqi Li ◽  
Zhiqiang Sun ◽  
Run Gao ◽  
...  

Alfalfa sometimes cannot be harvested in time due to the rainy season. To improve the fermentation quality, protein quality and digestibility of alfalfa silage harvested late, Lactobacillus plantarum (LP) and molasses were applied in an actual production process in this study. Alfalfa harvested at the full bloom stage was ensiled with (1) distilled water (control), (2) 1 × 106 colony-forming units LP/g fresh matter, (3) 15 g molasses/kg fresh matter (M) or (4) LP + M (LPM) for 55 days. Alfalfa ensiled with LP and/or molasses showed significantly lower pH and ammonia nitrogen contents than the control silage (p < 0.05). All additive treatments decreased nonprotein nitrogen contents and preserved more true protein (p < 0.05). However, molasses increased the acid detergent insoluble nitrogen content in the protein fractions (p < 0.05). The LP significantly improved the maximal cumulative gas production and the maximum gas production rate (p < 0.05) in the in vitro trial. Finally, both LP and molasses improved the neutral detergent fiber digestibility of the alfalfa silage (p < 0.05). The LP and molasses improved fermentation quality and digestibility and preserved more true protein in baled alfalfa silage harvested late in an actual production process. The LP utilized the excessive molasses and partially ameliorated its negative effects of causing higher acid detergent insoluble nitrogen content.


2017 ◽  
Vol 30 (9) ◽  
pp. 1278-1284 ◽  
Author(s):  
Zhihao Dong ◽  
Xianjun Yuan ◽  
Aiyou Wen ◽  
Seare T. Desta ◽  
Tao Shao

Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1575
Author(s):  
Fuhou Li ◽  
Zitong Ding ◽  
Adegbola T. Adesogan ◽  
Wencan Ke ◽  
Yun Jiang ◽  
...  

The effects of two strains of class IIa bacteriocin-producing lactic acid bacteria, Lactobacillus delbrueckii F17 and Lactobacillus plantarum (BNCC 336943), or a non-bacteriocin Lactobacillus plantarum MTD/1 (NCIMB 40027), on fermentation quality, microbial counts, and aerobic stability of alfalfa silage were investigated. Alfalfa was harvested at the initial flowering stage, wilted to a dry matter concentration of approximately 32%, and chopped to 1 to 2 cm length. Chopped samples were treated with nothing (control, CON), Lactobacillus delbrueckii F17 (F17), Lactobacillus plantarum (BNCC 336943) (LPB), or Lactobacillus plantarum MTD/1 (NCIMB 40027) (LPN), each at an application rate of 1 × 106 colony-forming units/g of fresh weight. Each treatment was ensiled in quadruplicate in vacuum-sealed polyethylene bags packed with 500 g of fresh alfalfa per bag and ensiled at ambient temperature (25 ± 2 °C) for 3, 7, 14, 30, and 60 days. The samples were then subjected to an aerobic stability test after 60 days of ensiling. Compared with the CON silage, the inoculants reduced the pH after 14 days of ensiling. After 60 days, pH was lowest in the LPB-treated silage, followed by the F17 and LPN-treated silages. Inoculation of F17 increased concentrations of lactic acid in silages fermented for 7, 14, 30, and 60 days relative to other treatments, except for the LPN-treated silages ensiled for 30 and 60 days, in which the lactic acid concentrations were similar to that of F17 silage. Application of F17 and LPB decreased the number of yeast and mold relative to CON and LPN-treated silages. Compared with the CON silage, inoculant-treated silages had greater aerobic stability, water-soluble carbohydrate, and crude protein concentrations, and lower neutral detergent fiber, amino acid nitrogen, and ammonia nitrogen concentrations. The LPB-treated silage had the greatest aerobic stability followed by the F17-treated silage. Both class IIa bacteriocin producing inoculants improved alfalfa silage fermentation quality, reduced the growth of yeasts and molds, and improved the aerobic stability of the ensiled forage to a greater extent than the proven LPN inoculant. However, higher crude protein concentration and lower ammonia nitrogen concentration were observed in LPN-treated silage relative to other treatments.


2018 ◽  
Vol 58 (10) ◽  
pp. 1860 ◽  
Author(s):  
XianJun Yuan ◽  
AiYou Wen ◽  
Jian Wang ◽  
JunFeng Li ◽  
Seare T. Desta ◽  
...  

This study was carried out to assess the effects of adding Lactobacillus plantarum, molasses or/and ethanol on the fermentation quality, in vitro digestibility and aerobic stability of total mixed ration (TMR) silage, which is well accepted in small-scale dairy farms in Tibet. Total mixed ration were ensiled in laboratory silos (1 L) and treated with (1) no additive (Control), (2) ethanol (E, 25 ml/kg fresh weight (FW)), (3) molasses (M, 30 g/kg FW); (4) Lactobacillus plantarum (L, 106cfu/g FW); (5) ethanol + molasses (EM); and (6) ethanol + Lactobacillus plantarum (EL). After 45 days of ensiling, six silos per treatment were opened for the fermentation quality and in vitro digestibility analyses, whereas 18 silos were used for the aerobic stability test for the following 9 days. All TMR silages were well preserved with dominant lactic acid (LA), low pH and ammonia nitrogen, and negligible propionic and butyric acid. The L and EL silages had the lowest pH and highest LA concentrations. The addition of ethanol did not inhibit silage fermentation as there were no significant differences for the pH, LA, acetic acid, negligible propionic acid or ammonia nitrogen content, lactic acid bacteria and yeast counts between Control and the E silage. During the aerobic stability test, pH increased by 1.39, 1.67, 1.69 and 0.74 for the Control, M, L and EM silages, but only 0.40 and 0.34 for E and EL silages, respectively. Upon exposure to air, the LA concentration in the L silage was evidently (P < 0.05) decreased, whereas LA concentration in the EL silage remained the highest value after the third day of aerobic exposure. Mean populations of aerobic bacteria and yeast in the E and EL silages were lower (P < 0.05) than those of the Control. These findings suggested that L. plantarum is effective in improving fermentation quality of TMR silages. Although the addition of ethanol in our study did not depress the fermentation of the TMR silages, it showed potential to inhibit the aerobic spoilage of TMR silages, either alone or in combination with the L. plantarum. It is concluded that L. plantarum combined with ethanol not only ensures better fermentation but also could improve aerobic stability.


2020 ◽  
Vol 19 (1) ◽  
pp. 744-752
Author(s):  
Xuxiong Tao ◽  
Sifan Chen ◽  
Jie Zhao ◽  
Siran Wang ◽  
Zhihao Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document