scholarly journals Evaluating genetic diversity and identifying priority conservation for seven Tibetan pig populations in China based on the mtDNA D-loop

2020 ◽  
Vol 33 (12) ◽  
pp. 1905-1911
Author(s):  
Qianyun Ge ◽  
Caixia Gao ◽  
Yuan Cai ◽  
Ting Jiao ◽  
Jinqiang Quan ◽  
...  

Objective: Tibetan pigs, an excellent species unique to China, face serious threats, which in turn affects the development and utilization of the outstanding advantages of plateau hypoxia adaptability and reduces their genetic diversity. Therefore, a discussion of measures to conserve this genetic resource is necessary. The method, based on genetic diversity, genetic divergence and total genetic contribution rate of population, reflects the priority conservation order and varies depending on the three different purposes of conservation.Methods: We analyzed mitochondrial DNA control region (D-loop) variation in 1,201 individuals from nine Tibetan pig populations across five provinces and downloaded 564 mtDNA D-loop sequences from three indigenous pig breeds in Qinghai, Sichuan, and Yunnan Provinces distributed near the Tibetan pigs.Results: We analyzed three different aspects: Changdu Tibetan pigs have the highest genetic diversity, and from the perspective of genetic diversity, the priority conservation is Changdu Tibetan pigs. Hezuo Tibetan pigs have the highest genetic contribution, so the priority conservation is Hezuo Tibetan pigs in the genetic contribution aspect. Rkaze Tibetan pigs were severely affected by indigenous pig breeds, so if considering from the perspective of introgression, the priority conservation is Rkaze Tibetan pigs.Conclusion: This study evaluated genetic diversity and comprehensively assessed conservation priority from three different aspects in nine Tibetan pig populations.

2022 ◽  
Vol 101 (1) ◽  
Author(s):  
Rongala Laxmivandana ◽  
Yoya Vashi ◽  
Dipjyoti Kalita ◽  
Santanu Banik ◽  
Nihar Ranjan Sahoo ◽  
...  

2020 ◽  
Vol 33 (4) ◽  
pp. 531-538
Author(s):  
Qianyun Ge ◽  
Caixia Gao ◽  
Yuan Cai ◽  
Ting Jiao ◽  
Jinqiang Quan ◽  
...  

Objective: Evidence from previous reports indicates that pig domestication in East Asia mainly occurred in the Mekong region and the middle and downstream regions of the Yangtze River. Further research identified two new origin centers for domestic pigs in the Tibetan Plateau and the islands of Southeast Asia. However, due to the small sample size of Tibetan pigs, details of the origin and spread of Tibetan pigs has not yet been established.Methods: We analyzed mitochondrial DNA control region (D-loop) variation in 1,201 individuals from nine Tibetan pig populations across five provinces. Comprehensive Tibetan pig samples were taken to perform the most detailed analysis of Tibetan pigs to date.Results: The result indicate that Rkaze pigs had the lowest level of diversity, while Changdu pigs had the highest diversity. Interestingly, these two populations were both in the Tibetan Plateau area. If we calculate diversity in terms of each province, the Tibetan Plateau area had the lowest diversity, while the Chinese province of Gansu had the highest diversity. Diversity gradient analysis of major haplotypes suggested three domestication centers of Tibetan pigs in the Tibetan Plateau and the Chinese provinces of Gansu and Yunnan.Conclusion: We found two new domestication centers for Tibetan pigs. One is in the Chinese province of Gansu, which lies in the upstream region of the Yellow River, and the other is in the Chinese province of Yunnan.


2018 ◽  
Vol 30 (3) ◽  
pp. 242-251 ◽  
Author(s):  
Kristina Gvozdanović ◽  
Vladimir Margeta ◽  
Polona Margeta ◽  
Ivona Djurkin Kušec ◽  
Dalida Galović ◽  
...  

Author(s):  
Puranjit Das ◽  
Rita Choudhury

In Assam wild populations of great Indian rhinoceros are found in three protected areas namely Kaziranga National Park, Orange National Park and Pobitora Wildlife Sanctuary. But it remains an area of investigation whether these three populations are homogeneous or not. To resolve this matter present genetic study was performed on mitochondrial DNA control region by using non invasive dung samples collected from the three natural habitats. The study showed a high level of genetic diversity of rhinoceros population in three habitats of Assam with 24 haplotypes from 196 samples and 21 variable sites in 413bp long nucleotide sequences was recorded. The Fst value also showed differences between the groups; and significant values obtained between Kaziranga and Pobitora with Orang groups. AMOVA analyses revealed the total genetic diversity is 91.62% and diversity between populations is only 8.38%. Thus the higher genetic variability found in Indian rhinoceros populations is important for future survivability, management and translocation to new habitat.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sunčica Stipoljev ◽  
Toni Safner ◽  
Pavao Gančević ◽  
Ana Galov ◽  
Tina Stuhne ◽  
...  

AbstractThe aoudad (Ammotragus lervia Pallas 1777) is an ungulate species, native to the mountain ranges of North Africa. In the second half of the twentieth century, it was successfully introduced in some European countries, mainly for hunting purposes, i.e. in Croatia, the Czech Republic, Italy, and Spain. We used neutral genetic markers, the mitochondrial DNA control region sequence and microsatellite loci, to characterize and compare genetic diversity and spatial pattern of genetic structure on different timeframes among all European aoudad populations. Four distinct control region haplotypes found in European aoudad populations indicate that the aoudad has been introduced in Europe from multiple genetic sources, with the population in the Sierra Espuña as the only population in which more than one haplotype was detected. The number of detected microsatellite alleles within all populations (< 3.61) and mean proportion of shared alleles within all analysed populations (< 0.55) indicates relatively low genetic variability, as expected for new populations funded by a small number of individuals. In STRUCTURE results with K = 2–4, Croatian and Czech populations cluster in the same genetic cluster, indicating joined origin. Among three populations from Spain, Almeria population shows as genetically distinct from others in results, while other Spanish populations diverge at K = 4. Maintenance of genetic diversity should be included in the management of populations to sustain their viability, specially for small Czech population with high proportion of shared alleles (0.85) and Croatian population that had the smallest estimated effective population size (Ne = 5.4).


Sign in / Sign up

Export Citation Format

Share Document