scholarly journals Linseed oil supplementation affects fatty acid desaturase 2, peroxisome proliferator activated receptor gamma, and insulin-like growth factor 1 gene expression in turkeys (Meleagris gallopavo)

Author(s):  
Klaudia Szalai ◽  
Károly Tempfli ◽  
Eszter Zsédely ◽  
Erika Lakatos ◽  
András Gáspárdy ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
M. Ebrahimi ◽  
M. A. Rajion ◽  
Y. M. Goh ◽  
A. Q. Sazili ◽  
J. T. Schonewille

This study was conducted to determine the effects of feeding oil palm frond silage based diets with added linseed oil (LO) containing highα-linolenic acid (C18:3n-3), namely, high LO (HLO), low LO (LLO), and without LO as the control group (CON) on the fatty acid (FA) composition of subcutaneous adipose tissue and the gene expression of peroxisome proliferator-activated receptor (PPAR)α, PPAR-γ, and stearoyl-CoA desaturase (SCD) in Boer goats. The proportion of C18:3n-3 in subcutaneous adipose tissue was increased (P<0.01) by increasing the LO in the diet, suggesting that the FA from HLO might have escaped ruminal biohydrogenation. Animals fed HLO diets had lower proportions of C18:1 trans-11, C18:2n-6, CLA cis-9 trans-11, and C20:4n-6 and higher proportions of C18:3n-3, C22:5n-3, and C22:6n-3 in the subcutaneous adipose tissue than animals fed the CON diets, resulting in a decreased n-6:n-3 fatty acid ratio (FAR) in the tissue. In addition, feeding the HLO diet upregulated the expression of PPAR-γ(P<0.05) but downregulated the expression of SCD (P<0.05) in the adipose tissue. The results of the present study show that LO can be safely incorporated in the diets of goats to enrich goat meat with potential health beneficial FA (i.e., n-3 FA).


2021 ◽  
Author(s):  
Jerad Jaborek ◽  
Francis Fluharty ◽  
Kichoon Lee ◽  
Henry Zerby ◽  
Alejandro Relling

Abstract Background: This study investigates intramuscular (IM) adipocyte development and growth in the Longissimus muscle (LM) between Wagyu- and Angus-sired steers compared at a similar age and days on feed (DOF) endpoint or similar body weight (BW) endpoint by measuring IM adipocyte cell area and lipid metabolism gene expression. Methods: Angus-sired steers (AN, n=6) were compared with steers from two different Wagyu sires, selected for either growth or marbling, to be compared at a similar DOF (WA-GD, n=5 and WA-MD, n=5) in experiment 1 or BW (WA-GB, n=4 and WA-MB, n=5) in experiment 2, respectively. Results: In experiment 1, WA-MD steers had a greater percentage of IM fat in the LM compared with AN and WA-GD steers. In experiment 2, WA-MB steers had a greater percentage of IM fat in the LM compared with AN and WA-GB steers. The distribution of IM adipocyte area was unimodal at all biopsy collections, with IM adipocyte area becoming progressively larger as cattle age and BW increased (P≤0.01). Peroxisome proliferator activated receptor delta (PPARd) was upregulated earlier for WA-MD and WA-MB cattle compared with other steers at a similar age and BW (P≤0.02; treatment×biopsy interaction). An earlier upregulation of PPARd is believed to have then upregulated peroxisome proliferator activated receptor gamma (PPARg) at a lesser BW for WA-MB steers (P=0.09; treatment×biopsy interaction), while WA-MD steers had a greater (P≤0.04) overall mean PPARg expression compared with other steers. Glycerol-3-phosphate acyltransferase, lipin 1, and hormone sensitive lipase demonstrated expression patterns similar to PPARg and PPARd or CCAAT enhancer binding protein beta, which emphasizes their importance in marbling development and growth. Additionally, WA-MD and WA-MB steers often had a greater early expression of fatty acid transporters (fatty acid transport protein 1; P<0.02; treatment×biopsy interaction) and binding proteins (fatty acid binding protein 4) compared with other steers. With many lipolytic genes upregulated at harvest, acetyl-CoA carboxylase beta may be inhibiting fatty acid oxidation in the LM to allow greater IM fat accumulation.Conclusions: Cattle with a greater marbling propensity appear to upregulate adipogenesis at a lesser maturity through PPARd, PPARg, and possibly adipogenic regulating compounds in lysophosphatidic acid and diacylglycerol.


Lipids ◽  
2006 ◽  
Vol 41 (7) ◽  
pp. 705-712 ◽  
Author(s):  
Bourlaye Fofana ◽  
Sylvie Cloutier ◽  
Scott Duguid ◽  
Jacqueline Ching ◽  
Chris Rampitsch

2019 ◽  
Vol 22 (6) ◽  
pp. 500-505
Author(s):  
Chiara Valtolina ◽  
Joris H Robben ◽  
Monique E van Wolferen ◽  
Hedwig S Kruitwagen ◽  
Ronald J Corbee ◽  
...  

Objectives The aim of this study was to evaluate if de novo hepatic lipid synthesis contributes to fatty acid overload in the liver of cats with feline hepatic lipidosis (FHL). Methods Lipogenic gene expression of peroxisome proliferator-activated receptor-alpha ( PPAR-α), peroxisome proliferator-activated receptor-gamma ( PPAR-γ), fatty acid synthase ( FASN) and sterol regulatory element-binding factor ( SREBF1) were evaluated using quantitative RT-PCR in liver tissue of six cats with FHL and compared with the liver tissue of eight healthy cats. Results In liver tissue, PPAR-α, PPAR-γ and FASN mRNA expression levels were not significantly different ( P >0.12, P >0.89 and P >0.5, respectively) in the FHL group compared with the control group. SREBF1 gene expression was downregulated around 10-fold in the FHL group vs the control group ( P = 0.039). Conclusions and relevance The downregulation of SREBF1 in the liver tissue of cats with FHL does not support the hypothesis that de novo lipogenesis in the liver is an important pathway of fatty acid accumulation in FHL.


2004 ◽  
Vol 24 (20) ◽  
pp. 9079-9091 ◽  
Author(s):  
Janice M. Huss ◽  
Inés Pineda Torra ◽  
Bart Staels ◽  
Vincent Giguère ◽  
Daniel P. Kelly

ABSTRACT Estrogen-related receptors (ERRs) are orphan nuclear receptors activated by the transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α), a critical regulator of cellular energy metabolism. However, metabolic target genes downstream of ERRα have not been well defined. To identify ERRα-regulated pathways in tissues with high energy demand such as the heart, gene expression profiling was performed with primary neonatal cardiac myocytes overexpressing ERRα. ERRα upregulated a subset of PGC-1α target genes involved in multiple energy production pathways, including cellular fatty acid transport, mitochondrial and peroxisomal fatty acid oxidation, and mitochondrial respiration. These results were validated by independent analyses in cardiac myocytes, C2C12 myotubes, and cardiac and skeletal muscle of ERRα−/− mice. Consistent with the gene expression results, ERRα increased myocyte lipid accumulation and fatty acid oxidation rates. Many of the genes regulated by ERRα are known targets for the nuclear receptor PPARα, and therefore, the interaction between these regulatory pathways was explored. ERRα activated PPARα gene expression via direct binding of ERRα to the PPARα gene promoter. Furthermore, in fibroblasts null for PPARα and ERRα, the ability of ERRα to activate several PPARα targets and to increase cellular fatty acid oxidation rates was abolished. PGC-1α was also shown to activate ERRα gene expression. We conclude that ERRα serves as a critical nodal point in the regulatory circuitry downstream of PGC-1α to direct the transcription of genes involved in mitochondrial energy-producing pathways in cardiac and skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document