Downslope Sediment Transport Processes and Sediment Distributions at the East Breaks, Northwest Gulf of Mexico

Author(s):  
James N. Piper ◽  
E. William Behrens
2014 ◽  
Vol 10 (1) ◽  
pp. 91-106 ◽  
Author(s):  
E. Dietze ◽  
F. Maussion ◽  
M. Ahlborn ◽  
B. Diekmann ◽  
K. Hartmann ◽  
...  

Abstract. Grain-size distributions offer powerful proxies of past environmental conditions that are related to sediment sorting processes. However, they are often of multimodal character because sediments can get mixed during deposition. To facilitate the use of grain size as palaeoenvironmental proxy, this study aims to distinguish the main detrital processes that contribute to lacustrine sedimentation across the Tibetan Plateau using grain-size end-member modelling analysis. Between three and five robust grain-size end-member subpopulations were distinguished at different sites from similarly–likely end-member model runs. Their main modes were grouped and linked to common sediment transport and depositional processes that can be associated with contemporary Tibetan climate (precipitation patterns and lake ice phenology, gridded wind and shear stress data from the High Asia Reanalysis) and local catchment configurations. The coarse sands and clays with grain-size modes >250 μm and <2 μm were probably transported by fluvial processes. Aeolian sands (~200 μm) and coarse local dust (~60 μm), transported by saltation and in near-surface suspension clouds, are probably related to occasional westerly storms in winter and spring. Coarse regional dust with modes ~25 μm may derive from near-by sources that keep in longer term suspension. The continuous background dust is differentiated into two robust end members (modes: 5–10 and 2–5 μm) that may represent different sources, wind directions and/or sediment trapping dynamics from long-range, upper-level westerly and episodic northerly wind transport. According to this study grain-size end members of only fluvial origin contribute small amounts to mean Tibetan lake sedimentation (19± 5%), whereas local to regional aeolian transport and background dust deposition dominate the clastic sedimentation in Tibetan lakes (contributions: 42 ± 14% and 51 ± 11%). However, fluvial and alluvial reworking of aeolian material from nearby slopes during summer seems to limit end-member interpretation and should be crosschecked with other proxy information. If not considered as a stand-alone proxy, a high transferability to other regions and sediment archives allows helpful reconstructions of past sedimentation history.


Water ◽  
2015 ◽  
Vol 7 (10) ◽  
pp. 5239-5257 ◽  
Author(s):  
Shervin Faghihirad ◽  
Binliang Lin ◽  
Roger Falconer

1984 ◽  
Vol 15 (1) ◽  
pp. 395-415 ◽  
Author(s):  
D. S. Gorsline ◽  
R. L. Kolpack ◽  
H. A. Karl ◽  
D. E. Drake ◽  
S. E. Thornton ◽  
...  

2017 ◽  
Vol 47 (9) ◽  
pp. 2347-2360 ◽  
Author(s):  
Roy Barkan ◽  
James C. McWilliams ◽  
M. Jeroen Molemaker ◽  
Jun Choi ◽  
Kaushik Srinivasan ◽  
...  

AbstractThis paper, the second of three, investigates submesoscale dynamics in the northern Gulf of Mexico under the influence of the Mississippi–Atchafalaya River system, using numerical simulations at 500-m horizontal resolution with climatological atmospheric forcing. The Turner angle Tu, a measure of the relative effect of temperature and salinity on density, is examined with respect to submesoscale current generation in runs with and without riverine forcing. Surface Tu probability density functions in solutions including rivers show a temperature-dominated signal offshore, associated with Loop Current water, and a nearshore salinity-dominated signal, associated with fresh river water, without a clear compensating signal, as often found instead in the ocean’s mixed layer. The corresponding probability distribution functions in the absence of rivers differ, illustrating the key role played by the freshwater output in determining temperature–salinity distributions in the northern Gulf of Mexico during both winter and summer. A quantity referred to as temperature–salinity covariance is proposed to determine what fraction of the available potential energy that is released during the generation of submesoscale circulations leads to the destruction of density gradients while leaving spice gradients untouched, thereby leading to compensation. It is shown that the fresh river fronts to the east of the Bird’s Foot can evolve toward compensation in concert with a gradual release of available potential energy. It is further demonstrated that, during winter, the cross-shelf freshwater transport mechanism to the west of the Bird’s Foot is well approximated by a diffusive process, whereas to the east is better represented by a ballistic process associated with the Mississippi water that converges in a jetlike pattern.


Author(s):  
P. Hoekstra ◽  
K.T. Houwman ◽  
A. Kroon ◽  
B.G. Ruessink ◽  
J.A. Roelvink ◽  
...  

2014 ◽  
pp. 1921-1928
Author(s):  
J Schneider ◽  
M Redtenbacher ◽  
G Harb ◽  
O Sass ◽  
J Stangl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document