THE ORIGIN OF HYDROGEN SULFIDE, ELEMENTAL SULFUR, CARBON DIOXIDE, AND NITROGEN IN RESERVOIRS

Author(s):  
ROBERT M. SIEBERT
1980 ◽  
Vol 20 (05) ◽  
pp. 377-384 ◽  
Author(s):  
E. Brunner ◽  
W. Woll

Description of Problem In recent years the search for natural gas has yielded many reserves that contain high concentrations of hydrogen sulfide. Production of sour gas initially was on a limited scale but since has increased considerably as a result of price increases for fossil fuels. Substantial quantities of sulfur now are produced from the hydrogen sulfide in these natural gas sources. In several of these natural gas fieldse.g., in Canada and north Germany-gas production is hampered severely due to the presence of elemental sulfur dissolved in the gas. The gas-bearing deposits are interspersed with elemental sulfur, which is dissolved to a greater or lesser extent in the sour gas, the solubility being strongly dependent on the pressure, temperature, and composition of the gas. It is well-known that the solubility of sulfur increases with increasing pressure, temperature, and hydrogen sulfide content. As a result of the geothermal temperature profile, the gas stream cools as it rises up the production tubing and there is a drop in pressure due to frictional effects. Consequently, the solubility drops and sulfur is deposited when the solubility limit is exceeded. The gases desolved in the liquid sulfur- principally hydrogen sulfide and carbon dioxide- lead to a lowering of the freezing point. At temperatures between 393.15 and 373.15 K, the sulfur begins to solidify in the line, blocking the tubing and bringing gas production to a standstill. To prevent such blockages, suitable solvents are pumped into the well via an annular space surrounding the production tubing to dissolve the sulfur, which then is carried to the surface with the gas stream. A discussion of the technological problems involved in this process is beyond the scope of this paper. It would be of great value and solving the problem associated with the production of sour natural gas to have more data on, among other things, the solubility of sulfur in compressed sour gases of various compositions over a range of temperatures and pressures. There is little literature on the solubility of sulfur in different natural gases. Kennedy and Wieland reported the results of measurements on the methane/carbon-dioxide/hydrogen-sulfide/sulfur system at pressures up to 40 MPa and temperatures up to 394.15 K Roof examined the solubility of sulfur in hydrogen sulfide up to 30 MPa and 383.15 K, but his results differ considerably from those of Kennedy and Wieland. Swift has published data on the solubility of sulfur in hydrogen sulfide at pressures between 35 and 140 MPa and temperatures between 394.15 and 450.15 K. Using a gas saturation method, we now have measured the solubility of sulfur in pure hydrogen sulfide and in four synthetic sour gas mixtures composed of H2S, CO2, CH4, and N2 in the temperature range of 373.15 to 433.15 K and at pressures up to 60 MPa. Solubility of Solids and Liquids in Compressed Gases It is particularly important that gas-phase fugacity coefficients be employed when calculating the solubility of a solid or a high-boiling liquid in a compressed gas. In general, these fugacity coefficients must be determined experimentally. Corrections for the nonideality of the gas phase, as are employed at lower pressures, can lead to completely erroneous results here. A consideration of both systems-solid/liquid and liquid/liquid is presented in the following. P. 377^


2020 ◽  
Vol 56 (5-6) ◽  
pp. 465-469
Author(s):  
F. R. Ismagilov ◽  
M. K. Dzheksenov ◽  
A. V. Kurochkin

2021 ◽  
pp. 139193
Author(s):  
Nong Li ◽  
Liqiang Zhao ◽  
Ying Wan ◽  
Xiaohang Deng ◽  
Xiangyu Huo ◽  
...  

2013 ◽  
Vol 53 (6) ◽  
pp. 580
Author(s):  
Mathew K. Pines ◽  
Tracy Muller ◽  
Clive J. C. Phillips

Noxious gases produced at hazardous concentrations in animal housing systems may affect the health and wellbeing of both animals and workers. In order to determine if the gaseous emissions from a pre-export assembly depot for sheep constituted a risk, atmospheric ammonia was measured in eight sheep buildings at an Australian assembly depot. Additionally, meteorological variables and distance from excreta were measured to determine their influence on ammonia, carbon dioxide and hydrogen sulfide concentrations. Repeat measurements were made at 12 sites in each building on 4 separate days, and four buildings were mapped using longitudinal and latitudinal transects. Concentrations of ammonia, carbon dioxide and hydrogen sulfide were all below the recommended safety thresholds for humans and livestock. There were positive correlations between ammonia and the following variables: ambient temperature and moisture content, and negative correlations with distance from animal excreta. Understanding these relationships will help to understand the reasons for ammonia accumulation in such buildings.


2020 ◽  
Vol 11 (2) ◽  
pp. 170-174
Author(s):  
O. M. Сhaіka ◽  
T. B. Peretyatko

Sulfur-reducing bacteria are promising agents for the development of new methods of wastewater treatment with the removal of ions of heavy metals and organic compounds. Study of the effect of various environmental factors on the growth and sulfidogenic activity of sulfur-reducing bacteria allows one to investigate the adaptability of these microorganisms to stress factors. The paper deals with the effect of рН, different concentrations of elemental sulfur, hydrogen sulfide and presence of various electron acceptors on the growth and sulfidogenic activity of bacteria Desulfuromonas sp. YSDS-3. The calculation of C/S ratio for sulfur-reducing bacteria Desulfuromonas sp. YSDS-3 was made, with the comparison with similar parameters of sulfate-reducing bacteria. In the medium with elemental sulfur, concentration of hydrogen sulfide increased with the concentration of elemental sulfur. Bacteria Desulfuromonas sp. YSDS-3 accumulated their biomass in the most effective way at the concentration of elemental sulfur of 10–100 mM. In the medium with polysulfide form of sulfur at the neutral pH, bacteria produced hydrogen sulfide and accumulated biomass the best. Hydrogen sulfide at the concentration of 3 mM did not inhibit the bacterial growth, but further increase in the hydrogen sulfide concentration inhibited the growth of bacteria. The bacteria did not grow at the hydrogen sulfide concentration of 25 mM and above. As the concentration of elemental sulfur and cell density increases, sulfidogenic activity of the bacteria grows. Presence of two electron acceptors (S and K2Cr2O7, S and MnO2, S and Fe (III)) did not affect the accumulation of biomass of the bacteria Desulfuromonas sp. YSDS-3. However, under such conditions the bacteria accumulated 1.5–2.5 times less hydrogen sulfide than in the test medium. After 12–24 h of cultivation, different concentrations of elemental sulfur had a significant effect on the sulfidogenic activity. However, during 3–16 days of cultivation, the percentage of effect of elemental sulfur concentration decreased to 31%, while the percentage of effect of cell density increased threefold. Presence in the medium of the electron acceptors (Cr (VI), MnO2, Fe (III)) alternative to elemental sulfur led to a significant decrease in the content of hydrogen sulfide produced by sulfur-reducing bacteria.


Sign in / Sign up

Export Citation Format

Share Document