scholarly journals Design of a Pressure Relief Valve for the Lubrication System of an Internal Combustion Engine

1999 ◽  
Vol 1999 (4) ◽  
pp. 309-314
Author(s):  
Jochen Pohl ◽  
Petter Krus ◽  
Jan-Ove Palmberg
Author(s):  
Antonio Giuffrida ◽  
Rosario Lanzafame

The lubrication system for automotive internal combustion engines consists of several components. Oil flow rate for lubrication is generated by a positive displacement pump equipped with a pressure relief valve, usually present in the casing of the pump to prevent high oil pressures building up in the system and to deliver to the sump the exceeding generated flow rate. This study focuses on the static and dynamic characteristics of the pressure relief valve with considerations about the stability of the overall system, according to design parameters of both the valve and the system itself.


2020 ◽  
Vol 6 (2) ◽  
pp. 146-151
Author(s):  
Ihor Holovach ◽  
◽  
Lidiia Kasha ◽  
Ivan Hudzii

The article analyses the modern lubrication systems for internal combustion engines. Systems with mechanical drive components that contain mechanical and electronic components have been found to have a number of disadvantages. In particular, when the internal combustion engine is started cold, when the viscosity of the oil is high, the hydrodynamic resistance characteristic rises sharply, which leads to high pressure at low speeds and the drive requires low pump speeds. Again, the increase in oil temperature causes a decrease in viscosity, the hydrodynamic resistance characteristic becomes flatter. This, in turn, reduces the pressure in the lubrication system and requires an increase in pump speed in order to keep the pressure constant. Based on the analysis, the requirements for lubrication systems are formulated and a separate lubrication system with forced oil supply is proposed in this paper. For the drive of pump lubrication system of the internal combustion engine, a switched reluctance motor is proposed and calculated. Such motor by its qualities is one of the most useful in this type of systems.


2015 ◽  
Vol 129 ◽  
pp. 857-862 ◽  
Author(s):  
Aleksey Plaksin ◽  
Alexander Gritsenko ◽  
Konstantin Glemba

2004 ◽  
Vol 471-472 ◽  
pp. 183-186
Author(s):  
Ming Liu ◽  
Fang Qi Cheng ◽  
Xianfeng Fan ◽  
Pei Qi Ge

More precise analysis and design of generalized lubrication system with the research results of modern lubrication theories are the effective measures to improve the efficiency and reliability of internal combustion engine. Through discussing and summarizing the development status in this field, a set of systematic methods of integrated analysis and design, and general rules are proposed in this paper. Technical measures for lubrication design of internal combustion engine are given. The database of lubrication design and condition monitoring is suggested to found. The best dispose of lubrication system design will be obtained through modeling, deducing control equation, and numerical simulation, improving and optimizing the coupling relationship among the capacity design, structure design, and lubrication design. Such, the modern lubrication design can be combined with strength design at the period of concert design and scheme design period really.


Author(s):  
S.V. Timokhin ◽  
◽  
Yu.V. Rodionov ◽  
I.I. Kurbakov ◽  
◽  
...  

А significant factor affecting the reliability of the internal combustion engine and its technical and Economic indicators is the efficiency of the lubrication system. When the standard oil supply is applied, semiliquid friction occurs between the contacting parts, in which the parts are not completely separated by a layer of oil. However, with this friction, the required durability of components and parts with heat removal is guaranteed. The performance of the engine lubrication system is determined by the state of its elements (coarse and fine filters, oil radiator and pump, valves), as well as the quality of oil, its level in the internal combustion engine crankcase and temperature. In domestic internal combustion engines, the minimum oil level in the crankcase is controlled, but in operation there are situations when the oil level exceeds its maximum permissible value. This situation occurs when coolant or fuel enters the lubrication system. Coolant can get into the oil if the cylinder head gaskets, sleeve o-rings, or cracks in the cylinder head and block are broken. Top-Livo can enter the oil through worn and damaged parts of the fuel equipment (gas pump diaphragm, fuel pump plunger pairs, etc.). These liquids sharply degrade the quality of the oil and increase the wear of internal combustion engine parts, and the standard singlelevel indicator will not give the driver operational information about the malfunction. In connection with the above, the purpose of this work is to improve the technology for monitoring the technical condition of the internal combustion engine lubrication system on the example of the d-245 diesel engine and its modifications, which are widely used in GAZ (GAZ-3309), ZIL (ZIL-5301), MAZ (MAZ Zubrenok), PAZ buses (PAZ-3205), MTZ tractors (MTZ — 100, 892, 1020), agricultural and construction equipment.by developing and implementing a built — in device for monitoring the minimum and maximum oil levels in the crankcase, as well as its temperature. The scientific novelty of the work is due to the use of new circuit and technical solutions, as well as the original algorithm of the sensor operation developed by the authors, based on the use of switching laws of reed switches with normally closed and normally open contacts, the operation of which is spaced over time and controlled oil levels. Block diagram of the proposed device comprises a multifunction sensor level and oil temperature, including sensors of the mi-minimum and increased levels of engine oil in the crankcase of the engine and its temperature, the operation mode switch signal cooling temperature-edusei fluid and engine oil, the first and second voltage сomparators, indicator lights, buzzer, switch power supply, voltage regulator and regular temperature sensor coolant. The use of the developed device significantly increases the reliability and convenience of monitoring one of the most important indicators of internal combustion engines-the oil level in the crankcase, which will avoid significant engine damage. As a result of further research, it is planned to develop the device design, conduct laboratory studies of the developed multifunctional sensor in order to determine the dependence of its resistance on the temperature at the normal level of engine oil in the measuring flask, as well as determine the actual values of the developed sensor response heights at the lower and upper levels.


2019 ◽  
Vol 18 (3) ◽  
pp. 248-255
Author(s):  
A. Yu. Fedorov

Many countries exploit a large number of armored vehicles, developed and manufactured dozens of years ago. Due to this there is a necessity of its continuous modernization. An object of the research is an internal combustion engine for a ground armored vehicle with a 12ЧН15/18 diesel engine. Calculation of engine thermal balance components is based on an engine external speed characteristic. An analysis of thermal balance for a 12ЧН15/18-type diesel engine of a ground armored vehicles has been made with separation according to: heat being withdrawn from cooling system liquid to environment; oil of lubrication system in the internal combustion engine; efficiently used heat; heat being withdrawn along with exhausted gases; residual portion of heat. The paper presents characteristics on changes in heat release during loading modes of the diesel engine operation and also shows an influence of the diesel loading on amount of heat withdrawn by cooling water and oil of diesel lubrication system. Two versions of the cooling system are considered in the paper, namely: with regulation and without regulation. The paper contains description of evaluation pertaining to an influence of a regulating system on characteristics of the diesel cooling system, parameters of efficient power and specific and efficient consumption of fuel. The necessity has been proved to modernize a regular fan cooling system of the armored vehicle with the 12ЧН15/18-type diesel engine. An influence of an average cooling liquid and diesel oil temperature with loading modes of 60 and 80 % on the efficient power of a power unit with a fan-type cooling system has been investigated in the paper. It has been determined that an increase in average temperatures of cooling liquid and oil for the 12ЧН15/18-type diesel makes it possible to improve economy and power of the diesel engine.


Sign in / Sign up

Export Citation Format

Share Document