On the Pressure Relief Valve for the Lubrication System of an Internal Combustion Engine

Author(s):  
Antonio Giuffrida ◽  
Rosario Lanzafame

The lubrication system for automotive internal combustion engines consists of several components. Oil flow rate for lubrication is generated by a positive displacement pump equipped with a pressure relief valve, usually present in the casing of the pump to prevent high oil pressures building up in the system and to deliver to the sump the exceeding generated flow rate. This study focuses on the static and dynamic characteristics of the pressure relief valve with considerations about the stability of the overall system, according to design parameters of both the valve and the system itself.

2020 ◽  
Vol 6 (2) ◽  
pp. 146-151
Author(s):  
Ihor Holovach ◽  
◽  
Lidiia Kasha ◽  
Ivan Hudzii

The article analyses the modern lubrication systems for internal combustion engines. Systems with mechanical drive components that contain mechanical and electronic components have been found to have a number of disadvantages. In particular, when the internal combustion engine is started cold, when the viscosity of the oil is high, the hydrodynamic resistance characteristic rises sharply, which leads to high pressure at low speeds and the drive requires low pump speeds. Again, the increase in oil temperature causes a decrease in viscosity, the hydrodynamic resistance characteristic becomes flatter. This, in turn, reduces the pressure in the lubrication system and requires an increase in pump speed in order to keep the pressure constant. Based on the analysis, the requirements for lubrication systems are formulated and a separate lubrication system with forced oil supply is proposed in this paper. For the drive of pump lubrication system of the internal combustion engine, a switched reluctance motor is proposed and calculated. Such motor by its qualities is one of the most useful in this type of systems.


Author(s):  
Victor Sverbilov ◽  
Dmitry Stadnick ◽  
Georgy Makaryants

The paper investigates instable behavior of a poppet-type gas pressure relief valve operating at a big flow rate (more than 2 kg/s) under super critical pressure drop. Instability is experienced as noise and vibration and leads to severe damage of a seat and other elements. Significant and unsteady flow forces coupled with small inherent damping make it difficult to stabilize the system. In previous works, the analytical and experimental research was carried out to reveal the most essential factors influencing stability and dynamic properties of the valve. The impact of the pilot valve dynamics on the system behavior was studied for the purpose of obtaining required accuracy and stability in a wide range of flow rate. It was shown in some testing that unstable behavior of the main valve occurred when the pilot valve was stable. This paper considers inherent stability of the main valve in the gas flow. CFD software ANSYS FLUENT is employed to study the effect of the poppet geometry on aerodynamic lifting force and valve stability in axial and lateral direction. The results have been verified through comparison with experimental data.


2007 ◽  
Vol 18-19 ◽  
pp. 423-433
Author(s):  
John A. Akpobi ◽  
P. Oboh

This paper describes computer-aided-design software which accurately and efficiently designs internal combustion engine (I.C.) parts with the aid of Microsoft Visual Basic Object - oriented programming language. In addition to numerically outputting solutions (design parameters), the software also provides graphical solutions which facilitates easy visualization of trends in the variation of the solutions with important parameters. We then illustrate its accuracy and efficiency with some benchmark examples.


Author(s):  
Giorgio Altare ◽  
Massimo Rundo ◽  
Micaela Olivetti

The paper deals with the 3D and 0D simulation of a conical popped pressure relief valve with flow force compensation. The commercial CFD code PumpLinx® was used to create a dynamic model of the valve and the interaction between the poppet dynamics and pressure field was taken into account. The model is able to determine the equilibrium position of the poppet in order to estimate the regulated pressure as function of the flow rate. A good agreement with the experimental data was found in the evaluation of the effect of the flow force compensation. Once validated, the CFD code was used to study the influence of the deflector geometry on the opening force. Moreover it was also used for determining some proper data to be supplied as input to a lumped parameters model of the valve. The tuning of the 0D model involved the discharge coefficient and the flow force. For the evaluation of the flow force compensation, a lookup table was calculated by the CFD code and then interpolated in the 0D model as function of the poppet displacement and of the flow rate.


1990 ◽  
Vol 112 (4) ◽  
pp. 596-603 ◽  
Author(s):  
T. Miyano ◽  
M. Hubbard

A model is developed for simulating and predicting the dynamics of intake-manifolds for automotive internal combustion engines. A thermodynamic control volume approach and bond graphs are used to derive mass and energy conservation equations. Simulation outputs include time histories of pressure, temperature, mass flow, energy flow, heat flow and overall volumetric efficiency. Cylinder pressure when the intake valve closes is intensively examined because it determines the volumetric efficiency. Increases in volumetric efficiency result from increases in pressure caused by dynamic effects. Volumetric efficiency versus rpm is used to evaluate the dynamic effects of certain intake-manifold configurations. Major design parameters are the length of the intake manifold pipe, diameter of the intake manifold pipe and length of the pipe upstream of the throttle valve. Changing manifold parameters can yield improvements in volumetric efficiency at certain engine speeds but can also cause deterioration at other speeds. Shortening the length of the upstream pipe moves the volumetric efficiency peaks to higher engine speeds.


Author(s):  
S.V. Timokhin ◽  
◽  
Yu.V. Rodionov ◽  
I.I. Kurbakov ◽  
◽  
...  

А significant factor affecting the reliability of the internal combustion engine and its technical and Economic indicators is the efficiency of the lubrication system. When the standard oil supply is applied, semiliquid friction occurs between the contacting parts, in which the parts are not completely separated by a layer of oil. However, with this friction, the required durability of components and parts with heat removal is guaranteed. The performance of the engine lubrication system is determined by the state of its elements (coarse and fine filters, oil radiator and pump, valves), as well as the quality of oil, its level in the internal combustion engine crankcase and temperature. In domestic internal combustion engines, the minimum oil level in the crankcase is controlled, but in operation there are situations when the oil level exceeds its maximum permissible value. This situation occurs when coolant or fuel enters the lubrication system. Coolant can get into the oil if the cylinder head gaskets, sleeve o-rings, or cracks in the cylinder head and block are broken. Top-Livo can enter the oil through worn and damaged parts of the fuel equipment (gas pump diaphragm, fuel pump plunger pairs, etc.). These liquids sharply degrade the quality of the oil and increase the wear of internal combustion engine parts, and the standard singlelevel indicator will not give the driver operational information about the malfunction. In connection with the above, the purpose of this work is to improve the technology for monitoring the technical condition of the internal combustion engine lubrication system on the example of the d-245 diesel engine and its modifications, which are widely used in GAZ (GAZ-3309), ZIL (ZIL-5301), MAZ (MAZ Zubrenok), PAZ buses (PAZ-3205), MTZ tractors (MTZ — 100, 892, 1020), agricultural and construction equipment.by developing and implementing a built — in device for monitoring the minimum and maximum oil levels in the crankcase, as well as its temperature. The scientific novelty of the work is due to the use of new circuit and technical solutions, as well as the original algorithm of the sensor operation developed by the authors, based on the use of switching laws of reed switches with normally closed and normally open contacts, the operation of which is spaced over time and controlled oil levels. Block diagram of the proposed device comprises a multifunction sensor level and oil temperature, including sensors of the mi-minimum and increased levels of engine oil in the crankcase of the engine and its temperature, the operation mode switch signal cooling temperature-edusei fluid and engine oil, the first and second voltage сomparators, indicator lights, buzzer, switch power supply, voltage regulator and regular temperature sensor coolant. The use of the developed device significantly increases the reliability and convenience of monitoring one of the most important indicators of internal combustion engines-the oil level in the crankcase, which will avoid significant engine damage. As a result of further research, it is planned to develop the device design, conduct laboratory studies of the developed multifunctional sensor in order to determine the dependence of its resistance on the temperature at the normal level of engine oil in the measuring flask, as well as determine the actual values of the developed sensor response heights at the lower and upper levels.


Author(s):  
Tero Eskola ◽  
Heikki Handroos ◽  
Takao Nishiumi

The present paper deals with hardware-in-the-loop (HIL) simulation of hydraulic components and systems. The main idea is to develop hydraulics by using a simulation model of it as a part of the machine. The interface between the real and simulated parts is defined by means of pressures and flows. The proposed idea makes it possible to test a variety of design parameters of a hydraulic system or single component on-line while running the practical experimental machine. The method is demonstrated in its application to a single-stage pressure relief valve in a simple hydraulic circuit. The real valve is replaced in the circuit by a HIL simulator mimicking the dynamic behavior of the valve. Finally the dynamic responses of original pressure relief valve and the HIL simulator are compared.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1148 ◽  
Author(s):  
Teresa Castiglione ◽  
Pietropaolo Morrone ◽  
Luigi Falbo ◽  
Diego Perrone ◽  
Sergio Bova

Improvements in internal combustion engine efficiency can be achieved with proper thermal management. In this work, a simulation tool for the preliminary analysis of the engine cooling control is developed and a model-based controller, which enforces the coolant flow rate by means of an electrically driven pump is presented. The controller optimizes the coolant flow rate under each engine operating condition to guarantee that the engine temperatures and the coolant boiling levels are kept inside prescribed constraints, which guarantees efficient and safe engine operation. The methodology is validated at the experimental test rig. Several control strategies are analyzed during a standard homologation cycle and a comparison of the proposed methodology and the adoption of the standard belt-driven pump is provided. The results show that, according to the control strategy requirements, a fuel consumption reduction of up to about 8% with respect to the traditional cooling system can be achieved over a whole driving cycle. This proves that the proposed methodology is a useful tool for appropriately cooling the engine under the whole range of possible operating conditions.


Author(s):  
М.А. Karpenko ◽  
◽  
G.V. Karpenko ◽  

he effectiveness of the additive for running-in. In addition, in the process of engine break-in there is a decrease in oil pressure. Reducing the rate of pressure drop and oil temperature in the engine lubrication system characterizes the quality of run-in. The use of various oils with pre-processing compositions containing surface-active agents (SAA) and chemically active substances (CAS), accelerate the process of break-in and improve its quality and reduce repair costs in general. Internal combustion engines of the UMZ-421 brand were studied, speed run-in of which was carried out at the run-in section of OJSC «Ulyanovsk automobile repair plant № 2» and in the internal combustion engine testing laboratory of the Ulyanovsk SAU. It is established that the efficiency of additives and oils in relation to M-8-B oil is distributed as follows during speed-up run-in: ОМД-8; М-8-В SINTEC + 3 % ВАРКС; М-8-В SINTEC + 2 % ОГМ-3 respectively in 3,52; 3,25; 3,07 times. According to the results of the research, it was concluded that the use of fast run-in on various pre-production compositions M-8-in SINTEC (GOST 17479.1- 85) + 2 % OGM-3; M-8 - in SINTEC (GOST 17479.1-85) + 3% VARS; OMD-8 reduces the volume of crankcase gases released up to 3.5 times, reduces the pressure drop in the engine lubrication system during fast run-in from 2.38 times to 1.17 times. Also, the oil temperature in the engine lubrication system decreases at the end of hot running under load by 1.15 times, from 433 K to 376 K. These studies confirm the assumption that the use of rolling oils with additives to accelerate running-in of rubbing surfaces has a positive effect not only on the alignment of the cylinder group, but also other critical friction pairs of the engine UMZ -421.


Sign in / Sign up

Export Citation Format

Share Document