A Validated Stability-Indicating RP-LC Method for the Simultaneous Determination of Amlodipine and Perindopril in Tablet Dosage Form and Their Stress Degradation Behavior Under ICH-Recommended Stress Conditions

2013 ◽  
Vol 96 (4) ◽  
pp. 751-757 ◽  
Author(s):  
Mehmet Gumustas ◽  
Sibel A Ozkan

Abstract A stability-indicating RP-LC assay method was developed for the simultaneous determination of the cardiovascular drugs amlodipine and perindopril in the presence of degradation products generated from forced decomposition studies. The developed method is applicable for the determination of related substances in bulk drugs and simultaneous assay in a tablet pharmaceutical dosage form. Separation of the drugs and their degradation products was obtained using an RP Waters Spherisorb ODS1 column (250 × 4.6 mm id, 5 μm particle size) with the mobile phase acetonitrile–water (30 + 70, v/v) containing 15 mM phosphoric acid. The pH of the mobile phase was adjusted to 5.0. A flow rate of 1.2 mL/min was used for the separations, with detection at 215 nm. The chromatographic separation was performed at a column temperature of 45°C. Atenolol was chosen as the internal standard. Amlodipine and perindopril were exposed to thermal, photolytic, hydrolytic, and oxidative stress conditions, and the stressed samples were analyzed by the proposed method. Degradation studies showed that both compounds were degraded under these stress conditions. The method was found to be stability-indicating and can be used for the routine analysis of amlodipine and perindopril in the studied combined tablet dosage form.

2012 ◽  
Vol 18 (1) ◽  
pp. 95-101 ◽  
Author(s):  
P.S. Jain ◽  
H.N. Jivani ◽  
R.N. Khatal ◽  
S.J. Surana

A novel stability-indicating high-performance liquid chromatographic assay method was developed and validated for quantitative determination of ciprofibrate in bulk drugs and in pharmaceutical dosage form in the presence of degradation products. An isocratic, reversed phase HPLC method was developed to separate the drug from the degradation products, using an Ace5-C18 (250?4.6 mm, 5 ?m) advance chromatography column, and methanol and water (90:10 v/v) as a mobile phase. The detection was carried out at a wavelength of 232 nm. The ciprofibrate was subjected to stress conditions of hydrolysis (acid, base), oxidation, photolysis and thermal degradation. Degradation was observed for ciprofibrate in base, in acid and in 30% H2O2. The drug was found to be stable in the other stress conditions attempted. The degradation products were well resolved from the main peak. The percentage recovery of ciprofibrate was from (98.65 to 100.01%) in the pharmaceutical dosage form. The developed method was validated with respect to linearity, accuracy (recovery), precision, system suitability, specificity and robustness. The forced degradation studies prove the stability indicating power of the method.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (11) ◽  
pp. 53-59
Author(s):  
Tukaram M. Kalyankar ◽  
◽  
Shital S. Dange ◽  
Shivraj B. Hambarde ◽  
Shailesh J. Wadher ◽  
...  

A simple, accurate and precise UV spectrometric method has been developed for the simultaneous determination of valsartan and hydrochlorothiazide in tablet dosage form. Spectra of valsartan and hydrochlorothiazide in methanol and water (50:50 V/V) show λ max at 250.0 nm and 271.4 nm, respectively. Valsartan and hydrochlorothiazide are subjected to various stress conditions like acid, alkali, thermal and photolytic degradation. Beer’s law was obeyed in concentration range of 4- 24 µg mL-1 for valsartan and 0.5-3 µg mL-1 for hydrochlorothiazide at their respective wavelengths. The proposed method was successfully applied to tablet dosage form for determination of both drugs. The percentage recovery of valsartan and hydrochlorothiazide were found to be 100.19 % and 99.51 %, respectively. A novel accurate and precise stability indicating spectroscopic method has been developed for estimation of valsartan and hydrochlorothiazide.


2010 ◽  
Vol 93 (1) ◽  
pp. 108-115 ◽  
Author(s):  
Hitesh Jogia ◽  
Umesh Khandelwal ◽  
Tripti Gandhi ◽  
Sukhdev Singh ◽  
Darshana Modi

Abstract An approach of forced degradation study was successfully applied for the development of a stability-indicating assay method for simultaneous determination of perindopril and indapamide in a formulation in the presence of its degradation products. The method showed adequate separation of perindopril and indapamide from their associated main impurities and degradation products. Separation was achieved on an XTerra<sup/> RP18, 5 µm, 150 4.6 mm id column at 55°C by using the mobile phase NaH2PO4 buffer (pH 2.0; 0.005 M)acetonitrile (75 + 25, v/v ) at a flow rate of 1 mL/min and UV detection at 215 nm. Comprehensive stress testing of perindopril and indapamide was carried out according to the International Conference on Harmonization (ICH) guideline Q1A (R2). The specificity of the method was determined by assessing interference from the placebo and by stress testing of the drug (forced degradation). The drug was subjected to acid hydrolysis, base hydrolysis, oxidation, dry heat, and photolysis to apply stress conditions. There were no other coeluting, interfering peaks from excipients, impurities, or degradation products due to variable stress conditions, and the method was specific for determination of perindopril and indapamide in the presence of degradation products. The method was validated in terms of linearity, precision, accuracy, specificity, robustness, and solution stability. The linearity of the proposed method was investigated in the range of 2456 µg/mL (r2 = 0.9993) for perindopril and 7.517.5 µg/mL (r2 = 0.9992) for indapamide. Degradation products produced as a result of stress studies did not interfere with the detection of perindopril and indapamide, and the assay can thus be considered stability indicating.


2017 ◽  
Vol 16 (1) ◽  
pp. 21-28
Author(s):  
Ruchi Jain ◽  
Nilesh Jain ◽  
Deepak Kumar Jain ◽  
Avineesh Singh ◽  
Surendra Kumar Jain

A simple, inexpensive, rapid and novel stability indicating isocratic HPLC method has been developed and validated for quantitative analysis of ertapenem sodium in the bulk drug and in pharmaceutical dosage form. An isocratic separation of ertapenem sodium was achieved on Hypersil BDS C18 column (4.6 x 250 mm, 5 ? particle size) as the stationary phase with a flow rate of 1.2 ml/min and using a UV detector to monitor the eluate at 298 nm. The mobile phase consisted of acetonitrile : water (60:40v/v) and pH adjusted 2.9 by othophosphoric acid enabled separation of the drug from its degradation products. The method was validated for linearity, accuracy (recovery), precision, specificity and robustness. The linearity of the method was satisfactory over the range 2-10 ?g/ml (correlation coefficient 0.999). Recovery of ertapenem sodium from the pharmaceutical dosage form ranged from 99.97 to 103.7%. Ertapenem sodium was subjected to stress conditions [hydrolysis (acid, base), oxidation, photolysis and thermal degradation] and the samples were analyzed by this method. The forceddegradation study with ertapenem sodium showed that it was degraded under basic condition. The drug was stable under the other stress conditions investigated. Ertapenem sodium was found to be less stable in solution state, whereas it was comparatively much stable in solid state. The degradation products were well resolved from main peak. The forced degradation study prove the stability indicating power of the method and therefore, the validated method may be useful for routine analysis of ertapenem sodium as bulk drug, in respective dosage forms, for dissolution studies and as stability indicating assay method in pharmaceutical laboratories and industries.Dhaka Univ. J. Pharm. Sci. 16(1): 21-28, 2017 (June)


2021 ◽  
Vol 11 (1-s) ◽  
pp. 108-112
Author(s):  
Advaita B. Patel ◽  
Deepa R. Patel ◽  
Dhaval M. Patel ◽  
Mansi Babaria

Delamanid is successfully used for treatment of MDR TB. A stability indicating analytical method has been developed and validated. In this study Delamanid was degraded under different stress test conditions as per International Conference on Harmonization. The degraded samples were used to develop a stability-indicating high performance liquid chromatographic (HPLC) method for the Delamanid. The Delamanid was well separated from degradation products using a reversed-phase Hypersil BDS C18 (250 mm × 4.6mm i.d., 5µm) column and a mobile phase comprising of 0.01M pH 2.70 Phosphate Buffer: Acetonitrile (pH 3.50) 70:30, pH of mobile phase was adjusted with Glacial acetic acid and other HPLC parameters were flow rate 1 mL/min, detection wavelength 254 nm and injection volume 10 µl. The method was validated for linearity, precision, accuracy, ruggedness and robustness. Results obtained after validation study indicating that the proposed single method allowed analysis of Delamanid in the presence of their degradation products formed under a variety of stress conditions. The developed procedure was also applicable to the determination of stability of the Delamanid in commercial pharmaceutical dosage form. Keywords:  Delamanid, stability indicating analytical method, HPLC


2017 ◽  
Vol 59 (2) ◽  
Author(s):  
Muhammad Ashfaq

A simple, specific and accurate stability indicating RPHPLC method was developed for the determination of acetaminophen, pamabrom and pyrilamine maleate simultaneously in pharmaceutical dosage forms. Successful separation of all the components was enacted within 10 min using C18 column with mobile phase of methanol and acidified water (pH 1.8) in the ratio of (27: 73 v/v respectively). Flow rate of the mobile phase was 1.5 mL/min with detection at 300 nm. The method was validated in accordance with ICH guidelines. Response was a linear function of concentration over the range of 50- 150 􀈝g/mL for acetaminophen, 2.5-7.5 􀈝g/ mL for pamabrom and 1.5-4.5 􀈝g/mL for pyrilamine maleate. The method resulted in excellent separation of all the analytes along with their stress induced degradation products with acceptable peak tailing and good resolution. It is therefore can be applied successfully for simultaneous determination of acetaminophen, pamabrom and pyrilamine maleate in pharmaceutical formulations and their stability studies.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (4) ◽  
pp. 56-62
Author(s):  
Hemlata M. Nimje ◽  
◽  
Meenakshi N. Deodhar

A simple, specific, precise, and accurate stability-indicating assay method using high performance thinlayer chromatography (HPTLC) is described for estimation of daclatasvir dihydrochloride (DCV) in bulk drug and in the tablet dosage form. The separations were achieved on prepared TLC plates precoated with silica gel 60 F254. The mobile phase developed and optimized for bringing out the separation involves toluene: methanol in the ratio of (6:4 V/V). The densitometric scanning wavelength selected was 312.0 nm. The compact bands of DCV were obtained at RF value of 0.702±0.032. The method developed was able to separate peaks of all the degradation products formed in ICH prescribed stress conditions with sufficient difference in their RF values. The developed method was validated for linearity and range, specificity, precision, accuracy, and robustness, and the results were found to be within acceptance criteria. The reliability of the method was evaluated when it was applied for the estimation of DCV in pharmaceutical tablet formulation and assay results gave good recovery.


Author(s):  
K. Srinivasa Rao ◽  
Keshar N K ◽  
N Jena ◽  
M.E.B Rao ◽  
A K Patnaik

A stability-indicating LC assay method was developed for the quantitative determination of fenofibrate (FFB) in pharmaceutical dosage form in the presence of its degradation products and kinetic determinations were evaluated in acidic, alkaline and peroxide degradation conditions. Chromatographic separation was achieved by use of Zorbax C18 column (250 × 4.0 mm, 5 μm). The mobile phase was established by mixing phosphate buffer (pH adjusted 3 with phosphoric acid) and acetonitrile (30:70 v/v). FFB degraded in acidic, alkaline and hydrogen peroxide conditions, while it was more stable in thermal and photolytic conditions. The described method was linear over a range of 1.0-500 μg/ml for determination of FFB (r= 0.9999). The precision was demonstrated by relative standard deviation (RSD) of intra-day (RSD= 0.56– 0.91) and inter-day studies (RSD= 1.47). The mean recovery was found to be 100.01%. The acid and alkaline degradations of FFB in 1M HCl and 1M NaOH solutions showed an apparent zero-order kinetics with rate constants 0.0736 and 0.0698  min−1 respectively and the peroxide degradation with 5% H2O2 demonstrated an apparent first-order kinetics with rate constant k = 0.0202 per min. The t1/2, t90   values are also determined for all the kinetic studies. The developed method was found to be simple, specific, robust, linear, precise, and accurate for the determination of FFB in pharmaceutical formulations.  


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (12) ◽  
pp. 51-55
Author(s):  
S Kathirvel ◽  
◽  
K. Madhu Babu

Described in this manuscript is the first reported new, simple high performance thin layer chromatographic method for the determination of tapentadol hydrochloride in bulk and its tablet dosage form. The drug was separated on aluminum plates precoated with silica gel 60 F254 with butanol: water: glacial acetic acid in the ratio of 6:2:2 (v/v/v) as mobile phase. Quantitative analysis was performed by densitometric scanning at 254 nm. The method was validated for linearity, accuracy, precision and robustness. The calibration plot was linear over the range of 200-600 ng band -1 for tapentadol hydrochloride. The method was successfully applied to the analysis of drug in a pharmaceutical dosage form.


Author(s):  
Sumithra M

Objective: The objective of the study is simple, sensitive; eco-friendly reverse phase chromatographic method has been developed and validated for the quantitative determination of ofloxacin in bulk and marketed formulation. Method: The developed method was done using Hypersil silica C18 (250 mm × 4.6 mm, 5 μ particle size) as column and the mobile phase is containing water and methanol in the ratio of (10:90) vol/vol. The mobile phase pass at 1 ml/min flow rate and the eluted solution is measured at 270 nm using a PDA detector. Results: The assay method is linear from the concentration range of 5–30 μg/ml. The corelation coefficient is 0.9998. The mean percentage recovery for the developed method is found to be in the range of 98.4–100.6%. The developed method complies robustness studies. Conclusion: The validation of the developed method was done by as per the ICH guidelines. It obeys the linearity, accuracy, precision, and robustness studies. Validation parameters are within the limitations. The results of the developed process indicated the reverse phase chromatographic method is simple, accurate as well as precise, rapid and eco-friendly method for routine analysis of ofloxacin in bulk and its pharmaceutical dosage form.


Sign in / Sign up

Export Citation Format

Share Document