Evaluation of the Thermo Scientific™ SureTect™ Listeria species Assay

2014 ◽  
Vol 97 (2) ◽  
pp. 521-538 ◽  
Author(s):  
Jonathan Cloke ◽  
Katharine Evans ◽  
David Crabtree ◽  
Annette Hughes ◽  
Helen Simpson ◽  
...  

Abstract The Thermo Scientific™ SureTect™ Listeria species Assay is a new real-time PCR assay for the detection of all species of Listeria in food and environmental samples. This validation study was conducted using the AOAC Research Institute (RI) Performance Tested MethodsSM program to validate the SureTect Listeria species Assay in comparison to the reference method detailed in International Organization for Standardization 11290-1:1996 including amendment 1:2004 in a variety of foods plus plastic and stainlesssteel. The food matrixes validated were smoked salmon, processed cheese, fresh bagged spinach, cantaloupe, cooked prawns, cooked sliced turkey meat, cooked sliced ham, salami, pork frankfurters, and raw ground beef. All matrixes were tested by Thermo Fisher Scientific, Microbiology Division, Basingstoke, UK. Inaddition, three matrixes (pork frankfurters, fresh bagged spinach, and stainless steel surface samples) were analyzed independently as part of the AOAC-RI-controlled independent laboratory study by the University of Guelph, Canada. Using probability of detection statistical analysis, a significant difference infavour of the SureTect assay was demonstrated between the SureTect and reference method for high level spiked samples of pork frankfurters, smoked salmon, cooked prawns, stainless steel, and low-spiked samples of salami. For all other matrixes, no significant difference was seen between the two methods during the study. Inclusivity testing was conducted with 68 different isolates of Listeria species, all of which were detected by the SureTect Listeria species Assay. None of the 33 exclusivity isolates were detected by the SureTect Listeria species Assay. Ruggedness testing was conducted to evaluate the performance of the assay with specific method deviations outside of the recommended parameters open to variation, which demonstrated that the assay gave reliable performance. Accelerated stability testing was additionally conducted, validating the assay shelf life.

2014 ◽  
Vol 97 (1) ◽  
pp. 133-154 ◽  
Author(s):  
Jonathan Cloke ◽  
Carlos Leon-Velarde ◽  
Nathan Larson ◽  
Keron Dave ◽  
Katharine Evans ◽  
...  

Abstract The Thermo Scientific™ SureTect™Listeria monocytogenes Assay is a new real-time PCR assay for the detection of Listeria monocytogenes in food and environmental samples. This assay was validated using the AOAC Research Institute (AOAC-RI) Performance Tested MethodsSM program in comparison to the reference method detailed in International Organization for Standardization 11290-1:1996, including Amendment 1:2004 with the following foods and food contact surfaces: smoked salmon, processed cheese, fresh bagged spinach, fresh cantaloupe, cooked prawns (chilled product), cooked sliced turkey meat (chilled product), ice cream, pork frankfurters, salami, ground raw beef meat (12% fat), plastic, and stainless steel. All matrixes were tested by Thermo Fisher Scientific, Microbiology Division, Basingstoke, UK. In addition, three matrixes (pork frankfurters, bagged lettuce, and stainless steel) were analyzed independently as part of the AOAC-RI controlled laboratorystudy by the University of Guelph, Canada. Using probability of detection (POD) statistical analysis, a significant difference was demonstrated between the candidate and reference methods for salami, cooked sliced turkey and ice cream in favor of the SureTect assay. For all other matrixes, no significant difference by POD was seen between the two methods during the study. Inclusivity and exclusivity testing was also conducted with 53 and30 isolates, respectively, which demonstrated that the SureTect assay was able to detect all serotypes of L. monocytogenes. None of the exclusivity isolates analyzed were detectedby the SureTect assay. Ruggedness testing was conducted to evaluate the performance of the assay with specific method deviations outside the recommended parameters open to variation, i.e., enrichment time and temperature and lysis temperature, which demonstrated that the assay gave reliable performance. Accelerated stability testing was alsoconducted, validating the assay shelf life.


2017 ◽  
Vol 100 (5) ◽  
pp. 1434-1444 ◽  
Author(s):  
Adam C Joelsson ◽  
Shawn P Terkhorn ◽  
Ashley S Brown ◽  
Amrita Puri ◽  
Benjamin J Pascal ◽  
...  

Abstract Veriflow®Listeria species (Veriflow LS) is a molecular-based assay for the presumptive detection of Listeria spp. from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile) and ready-to-eat (RTE) food matrixes (hot dogs and deli meat). The assay utilizes a PCRdetection method coupled with a rapid, visual, flow-based assay that develops in 3 min post-PCR amplification and requires only a 24 h enrichment for maximum sensitivity. The Veriflow LS system eliminates the need for sample purification, gel electrophoresis, or fluorophore-based detection of target amplification and does not require complex data analysis. This Performance Tested MethodSM validation study demonstrated the ability of the Veriflow LS assayto detect low levels of artificially inoculated Listeria spp. in six distinct environmental and food matrixes. In each unpaired reference comparison study, probability of detection analysis indicated that there was no significant difference between the Veriflow LS method and the U.S. Department of Agriculture Food Safety and Inspection Service Microbiology Laboratory Guide Chapter 8.08 reference method. Fifty-one strains of various Listeria spp. were detected in the inclusivity study, and 35 nonspecific organisms went undetected in the exclusivity study. The study results show that the Veriflow LS is a sensitive, selective, and robust assay for the presumptive detection of Listeria spp. sampled from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile) and RTE food matrixes (hot dogs and delimeat).


2014 ◽  
Vol 97 (2) ◽  
pp. 539-560
Author(s):  
Jonathan Cloke ◽  
Dorn Clark, Jr ◽  
Roy Radcliff ◽  
Carlos Leon-Velarde ◽  
Nathan Larson ◽  
...  

Abstract The Thermo Scientific™ SureTect™ Salmonella species Assay is a new real-time PCR assay for the detection of Salmonellae in food and environmental samples. This validation study was conducted using the AOAC Research Institute (RI) Performance Tested MethodsSM program to validate the SureTect Salmonella species Assay incomparison to the reference method detailed in International Organization for Standardization 6579:2002 in a variety of food matrixes, namely, raw ground beef, raw chicken breast, raw ground pork, fresh bagged lettuce, pork frankfurters, nonfat dried milk powder, cooked peeled shrimp, pasteurized liquid whole egg, ready-to-eat meal containing beef, and stainlesssteel surface samples. With the exception of liquid whole egg and fresh bagged lettuce, which were tested in-house, all matrixes were tested by Marshfield Food Safety, Marshfield, WI, on behalf of Thermo Fisher Scientific. In addition, three matrixes (pork frankfurters, lettuce, and stainless steel surface samples) were analyzed independently as part of the AOAC-RI-controlled laboratory study by the University of Guelph, Canada. No significant difference by probability of detection or McNemars Chi-squared statistical analysis was found between the candidate or reference methods for any of the food matrixes or environmental surface samples tested during the validation study. Inclusivity and exclusivity testing was conducted with 117 and 36 isolates, respectively, which demonstrated that the SureTect Salmonella species Assay was able to detect all the major groups of Salmonella enterica subspecies enterica (e.g., Typhimurium) and the less common subspecies of S. enterica (e.g., arizoniae) and the rarely encountered S. bongori. None of the exclusivity isolates analyzed were detected by the SureTect Salmonella species Assay. Ruggedness testing was conducted to evaluate the performance of the assay with specific method deviations outside of the recommended parameters open to variation (enrichment time and temperature, and lysis temperature), which demonstrated that the assay gave reliable performance. Accelerated stability testing was additionally conducted, validating the assay shelf life.


2016 ◽  
Vol 99 (2) ◽  
pp. 407-416
Author(s):  
Jonathan Cloke ◽  
Julia Arizanova ◽  
David Crabtree ◽  
Helen Simpson ◽  
Katharine Evans ◽  
...  

Abstract The Thermo Scientific™ SureTect™ Listeria species Real-Time PCR Assay was certified during 2013 by the AOAC Research Institute (RI) Performance Tested MethodsSM program as a rapid method for the detection of Listeria species from a wide range of food matrixes and surface samples. A method modification study was conducted in 2015 to extend the matrix claims of the product to a wider range of food matrixes. This report details the method modification study undertaken to extend the use of this PCR kit to the Applied Biosystems™ 7500 Fast PCR Instrument and Applied Biosystems RapidFinder™ Express 2.0 software allowing use of the assay on a 96-well format PCR cycler in addition to the current workflow, using the 24-well Thermo Scientific PikoReal™ PCR Instrument and Thermo Scientific SureTect software. The method modification study presented in this report was assessed by the AOAC-RI as being a level 2 method modification study, necessitating a method developer study on a representative range of food matrixes covering raw ground turkey, 2% fat pasteurized milk, and bagged lettuce as well as stainless steel surface samples. All testing was conducted in comparison to the reference method detailed in International Organization for Standardization (ISO) 6579:2002. No significant difference by probability of detection statistical analysis was found between the SureTect Listeria species PCR Assay or the ISO reference method methods for any of the three food matrixes and the surface samples analyzed during the study.


2016 ◽  
Vol 99 (2) ◽  
pp. 417-427
Author(s):  
Jonathan Cloke ◽  
Katharine Evans ◽  
David Crabtree ◽  
Annette Hughes ◽  
Helen Simpson ◽  
...  

Abstract The Thermo Scientific™ SureTect™ Listeria species assay is a new real-time PCR assay for the detection of all species of Listeria in food and environmental samples. The assay was originally certified as Performance Tested MethodsSM (PTM) 071304 in 2013. This report details the method modification study undertaken to extend the performance claims of the assay for matrixes of raw ground turkey, raw ground pork, bagged lettuce, raw pork sausages, pasteurized 2% fat milk, raw cod, pasteurized brie cheese, and ice cream. The method modification study was conducted using the AOAC Research Institute (RI) PTM program to validate the SureTect PCR assay in comparison to the reference method detailed in ISO 11290-1:1996 including amendment 1:2004. All matrixes were tested by Thermo Fisher Scientific (Basingstoke, United Kingdom). In addition, three matrixes (raw cod, bagged lettuce, and pasteurized brie cheese) were analyzed independently as part of the AOAC RI-controlled independent laboratory study by the University of Guelph, Canada. Using probability of detection statistical analysis, there was no significant difference in the performance between the SureTect assay and the International Organization for Standardization reference method for any of the matrixes analyzed in this study.


2013 ◽  
Vol 96 (2) ◽  
pp. 225-228 ◽  
Author(s):  
DeAnn L Benesh ◽  
Erin S Crowley ◽  
Patrick M Bird

Abstract A validation study of the 3M™ Petrifilm™ Environmental Listeria (EL) Plate (3M Food Safety, St. Paul, MN) was conducted at Q Laboratories, Inc., Cincinnati, OH. The method was compared to the Health Canada MFHPB-30 reference method for the analysis of stainless steel environmental surfaces. Twenty replicates of the environmental surface were analyzed at a low and a high inoculum level. The low-level sampling area was inoculated with 0.2–2 CFU/5 cm2, and the high-level sampling area was inoculated with 2–5 CFU/5 cm2. Five control replicates were also analyzed at 0 CFU/5 cm2. There was no significant difference in the number of positives detected by the 3M Petrifilm EL Plate method and the Health Canada MFHPB-30 reference method for the environmental surface analyzed in this study.


2013 ◽  
Vol 96 (3) ◽  
pp. 532-541
Author(s):  
Olga Petrauskene ◽  
Yan Cao ◽  
Patrick Zoder ◽  
Lily Y Wong ◽  
Priya Balachandran ◽  
...  

Abstract The Applied Biosystems Performance Tested MethodSM for detecting Listeria species in food and environmental samples was compared to the Health Canada reference method (MFHPB-30) for the analysis of five ready-to-eat (RTE) meats (deli turkey, hot dogs, liver paté, deli ham, and raw fermented sausage) and a stainless steel surface. The MicroSEQ method includes the MicroSEQ®Listeria spp. Detection Kit and the option of two different sample preparation kits, either the automated high-throughput PrepSEQ™ Nucleic Acid Extraction Kit or the manual low- to mid-throughput PrepSEQ™ Rapid Spin Sample Preparation Kit. For each sample matrix, 20 replicates were analyzed at two inoculum levels: for RTE meats a low-level inoculum at 0.2–2 CFU/25 g and a high-level inoculum at 2–5 CFU/25 g; and for environmental surfaces, a low-level inoculum at 0.2–2 CFU/5 cm2 sampling area and a high-level inoculum at 2–5 CFU/5 cm2 sampling area. Five control replicates were also analyzed at 0 CFU/25 g (uninoculated) for food or 0 CFU/5 cm2 sampling area for environmental surface. Both sample preparation methods returned identical results. There was no statistically significant difference in the number of positive samples detected by the MicroSEQ Listeria species method and the MFHPB-30 reference method for three RTE meats and for the one stainless steel environmental surface tested. For deli turkey, there was a statistically significant difference in the number of positive results detected by the MicroSEQ method and the Health Canada MFHPB-30 reference method for the low inoculation level, with the MicroSEQ method detecting more positives. For hot dogs, statistical equivalence was not applicable since hot dogs were spiked with 10x Listeria innocua as competitive background, and the MicroSEQ method detects all known Listeria. Because the MicroSEQ method uses real-time PCR to detect pathogens, it provides faster time-to-results with equivalent detection compared to culture methods. The MicroSEQ method detects Listeria species within 2 to 3 h following 24 to 28 h enrichment compared to culture methods that take at least 5 days for presumptive positive results.


2015 ◽  
Vol 98 (5) ◽  
pp. 1315-1324 ◽  
Author(s):  
Jonathan Cloke ◽  
Katharine Evans ◽  
David Crabtree ◽  
Annette Hughes ◽  
Helen Simpson ◽  
...  

Abstract The Thermo Scientific™ SureTect™ Listeria monocytogenes assay is a real-time PCR assay for the detection of Listeria monocytogenes in food and environmental samples, which was certified during 2013 by the AOAC Research Institute (RI) as Performance Tested MethodSM (PTM) 061302 for a representative range of key food matrixes and production surfaces. This report details the method modification study, which was conducted during 2014, using the AOAC-RI PTM program to extend the validated matrix claims of the assay in comparison to the reference method detailed in International Organization for Standardization 11290-1:1996, including Amendment 1:2004, to gain certification for raw ground turkey, raw ground pork, pasteurized 2% milk, raw pork sausages, raw cod, pasteurized brie cheese, cooked sliced ham, and bagged lettuce. All matrixes were tested by Thermo Fisher Scientific, Microbiology Division, Basingstoke, UK. In addition, brie cheese, bagged lettuce, and raw cod were analyzed independently by the University of Guelph, Canada, during the AOAC-RI controlled independent laboratory study. Using probability of detection (POD) statistical analysis, a significant difference was demonstrated between the candidate and reference methods for the high spiking level with raw ground pork and brie cheese. For all other matrixes and the low spiked levels for raw ground pork and brie cheese, no significant difference by POD was seen between the two methods during the study.


2018 ◽  
Vol 101 (2) ◽  
pp. 562-576
Author(s):  
Brett Maroni ◽  
Tucker Lopez ◽  
Cambria Neal ◽  
Sarah Verver ◽  
Celina Puente ◽  
...  

Abstract Two candidate method modifications for the Atlas Listeria Environmental LE Detection Assay were compared with the U.S. Department of Agriculture (USDA)-Food Safety and Inspection Service Microbiology Laboratory Guidebook 8.09 (MLG 8.09) method for detection of Listeria spp. on stainless steel, polyvinyl chloride (PVC), and sealed concrete surfaces. For LE candidate method 1, samples were enriched in FoodChek Actero Listeria Enrichment Media [ALEM; Performance Tested MethodSM (PTM) 111201] at 35 ± 2°C for 18 to 24 h and evaluated for a range of analytical sample volumes. For LE candidate method 2, the current Roka PTM using 90 mL of Half-Fraser broth for enrichment at 35 ± 2°C was evaluated at 24 h with a reduced sample volume. These comparisons were made in multiple studies across the three environmental surfaces. Within each method and study, a total of 5 samples were uninoculated, 20 samples were inoculated with Listeria spp. at a low level to target fractional positivity, and 5 samples were inoculated with Listeria spp. at a high level to approach a probability of detection of 1. Inclusivity and exclusivity studies were also conducted for the LE method in combination with Half-Fraser and ALEM. The Atlas Listeria Environmental LE Detection Assay detected all 50 inclusive organisms, including 25 strains of L. monocytogenes and 5 strains of each of the other five common species of Listeria (L. innocua, L. welshimeri, L. ivanovii, L. seeligeri, and L. grayi) and none of the 30 exclusive organisms across all media and with both 200 and 2000 µL sample volumes. For the LE candidate method 1 studies, no significant differences were observed within the Roka ALEM method at 18, 20, or 24 h and for both the 200 and 2000 µL sample volumes as compared with the paired culture outcome. However, the ALEM method performed significantly better as compared with the unpaired reference method for sealed concrete and stainless steel. For the LE candidate method 2 studies, no significant differences were observed within the Roka HF method at 24 h for the 200 and 2000 µL samples as compared with the paired culture outcomes and unpaired reference method outcomes across the surfaces. The independent laboratory studies observed no significant differences in performance between the USDA/MLG 8.09 reference method and candidate methods 1 or 2, respectively, across the evaluated parameters. Overall, the candidate method 1 modification parameters and candidate method 2 sample parameters for the Atlas Listeria Environmental LE Detection Assay were statistically equivalent to or better than the reference method for detection of Listeria spp. on stainless steel, PVC, and sealed concrete surfaces, providing greater flexibility in method application for end users.


2013 ◽  
Vol 96 (2) ◽  
pp. 218-224
Author(s):  
DeAnn L Benesh ◽  
Erin S Crowley ◽  
Patrick M Bird

Abstract A validation study of the 3M™ Tecra™ Listeria Visual Immunoassay (VIA; 3M Food Safety, St. Paul, MN) was conducted at Q Laboratories, Inc., Cincinnati, OH. The 3M Tecra Listeria VIA method was compared to the Health Canada MFHPB-30 reference method for the analysis of five ready-to-eat (RTE) meats: deli turkey, hot dogs, liver pate, raw fermented sausage, and deli ham, and on a stainless steel environmental surface. Twenty replicates of each of the five food matrixes were analyzed at a low and a high inoculum level. The low-level test portions were inoculated with 0.2–2 CFU/25 g, and the high-level test portions with 2–5 CFU/25 g. In addition, 20 replicates of one environmental surface were analyzed at a low and a high inoculum level. The low-level sampling area was inoculated with 0.2–2 CFU/5 cm2, and the high-level area with 2–5 CFU/5 cm2. Five control replicates were also analyzed at 0 CFU/25 g (uninoculated) for the foods and at 0 CFU/5 cm2 for the environmental sampling area. There was no significant difference in the number of positives detected by the 3M Tecra Listeria VIA and the Health Canada MFHPB-30 reference method for four of the RTE meats and the stainless steel environmental surface analyzed in this study. For the raw, fermented sausage, there was a significant difference in the number of positives detected for the high inoculum level by the 3M Tecra Listeria VIA and the Health Canada MFHPB-30 reference method, with the 3M Tecra Listeria VIA method detecting more positives.


Sign in / Sign up

Export Citation Format

Share Document