Validated Stability-Indicating Spectrophotometric Methods for the Determination of Cefixime Trihydrate in the Presence of its Acid and Alkali Degradation Products

2015 ◽  
Vol 98 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Nadia M Mostafa ◽  
Laila Abdel-Fattah ◽  
Soheir A Weshahy ◽  
Nagiba Y Hassan ◽  
Shereen A Boltia

Abstract Five simple, accurate, precise, and economical spectrophotometric methods have been developed for thedetermination of cefixime trihydrate (CFX) in the presence of its acid and alkali degradation products without prior separation. In the first method, secondderivative (2D) and first derivative (1D) spectrophotometry was applied to the absorption spectra of CFX and its acid (2D) or alkali (1D) degradation products by measuring the amplitude at 289 and 308 nm, respectively. The second method was a first derivative (1DD) ratio spectrophotometric method where the peak amplitudes were measured at 311 nm in presence of the acid degradation product, and 273 and 306 nm in presence of its alkali degradation product. The third method was ratio subtraction spectrophotometry where the drug is determined at 286 nm in laboratory-prepared mixtures of CFX and its acid or alkali degradation product. The fourth method was based on dualwavelength analysis; two wavelengths were selected at which the absorbances of one component were the same, so wavelengths 209 and 252 nm were used to determine CFX in presence of its acid degradation productand 310 and 321 nm in presence of its alkali degradation product. The fifth method was bivariate spectrophotometric calibration based on four linear regression equations obtained at the wavelengths 231 and 290 nm, and 231 and 285 nm for the binary mixture of CFX with either its acid or alkali degradation product, respectively. The developed methods were successfully applied to the analysis of CFX in laboratory-prepared mixtures and pharmaceutical formulations with good recoveries, and their validation was carried out following the International Conference on Harmonization guidelines. The results obtained were statistically compared with each other and showed no significant difference with respect to accuracy and precision.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Shereen Mowaka ◽  
Bassam M. Ayoub ◽  
Mostafa A. Hassan ◽  
Wafaa A. Zaghary

New spectrophotometric and chemometric methods were carried out for the simultaneous assay of trelagliptin (TRG) and its acid degradation product (TAD) and applied successfully as a stability indicating assay to recently approved Zafatek® tablets. TAD was monitored using TLC to ensure complete degradation. Furthermore, HPLC was used to confirm dealing with one major acid degradation product. The proposed methods were developed by manipulating zero-order, first-derivative, and ratio spectra of TRG and TAD using simultaneous equation, first-derivative, and mean-centering methods, respectively. Using Spectra Manager II and Minitab v.14 software, the absorbance at 274 nm–260.4 nm, amplitudes at 260.4 nm–274.0 nm, and mean-centered values at 287.6 nm–257.2 nm were measured against methanol as a blank for TRG and TAD, respectively. Linearity and the other validation parameters were acceptable at concentration ranges of 5–50 μg/mL and 2.5–25 μg/mL for TRG and TAD, respectively. Using one-way analysis of variance (ANOVA), the optimized methods were compared and proved to be accurate for the simultaneous assay of TRG and TAD.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Hayam M. Lotfy ◽  
Eman M. Morgan ◽  
Yasmin Mohammed Fayez ◽  
M. Abdelkawy

Abstract Background Four rapid, accurate, and validated stability-indicating spectrophotometric methods have been described in the present work for the analysis of trimebutine maleate (TM) in existence of its degradation products in its authentic form and in pharmaceutical formulations excluding any separation steps. Results These methods were a dual-wavelength (DW) method which allows the determination of TM in existence of its degradation products at 243 nm and 269 nm, second derivative (D2) method measured at peak amplitude at 268 nm, ratio difference (RD) method at 242 nm and 278 nm, and constant center coupled with spectrum subtraction (CC-SS) method at 242 nm and 278 nm versus 278 nm. By applying the suggested methods, TM could be quantified in the range of 5.0–60.0 μg/mL with percentage recoveries 99.97 ± 0.40, 100.36 ± 0.58, 99.90 ± 0.42, and 100.15 ± 0.45 for DW, D2, RD, and CC-SS methods, respectively. International Conference on Harmonization guidelines were followed for validation of the described methods, and the application of laboratory-prepared mixtures along with different pharmaceutical drugs including the target drug showed favorable results without any contribution from additives. Conclusions Statistical comparison was used to compare the proposed and official methods, and satisfactory results for both accuracy and precision were obtained. The results confirm the applicability of the suggested methods for the determination of TM in quality control laboratories.


Author(s):  
Nesma M Fahmy ◽  
Adel M Michael

Abstract Background Modern built-in spectrophotometer software supporting mathematical processes provided a solution for increasing selectivity for multicomponent mixtures. Objective Simultaneous spectrophotometric determination of the three naturally occurring antioxidants—rutin(RUT), hesperidin(HES), and ascorbic acid(ASC)—in bulk forms and combined pharmaceutical formulation. Method This was achieved by factorized zero order method (FZM), factorized derivative method (FD1M), and factorized derivative ratio method (FDRM), coupled with spectrum subtraction(SS). Results Mathematical filtration techniques allowed each component to be obtained separately in either its zero, first, or derivative ratio form, allowing the resolution of spectra typical to the pure components present in Vitamin C Forte® tablets. The proposed methods were applied over a concentration range of 2–50, 2–30, and 10–100 µg/mL for RUT, HES, and ASC, respectively. Conclusions Recent methods for the analysis of binary mixtures, FZM and FD1M, were successfully applied for the analysis of ternary mixtures and compared to the novel FDRM. All were revealed to be specific and sensitive with successful application on pharmaceutical formulations. Validation parameters were evaluated in accordance with the International Conference on Harmonization guidelines. Statistical results were satisfactory, revealing no significant difference regarding accuracy and precision. Highlights Factorized methods enabled the resolution of spectra identical to those of pure drugs present in mixtures. Overlapped spectra of ternary mixtures could be resolved by spectrum subtraction coupled FDRM (SS-FDRM) or by successive application of FZM and FD1M.


2008 ◽  
Vol 91 (6) ◽  
pp. 1318-1330 ◽  
Author(s):  
Mohamed Heba ◽  
Nesrin Ramadan ◽  
Moustafa El-Laithy

Abstract Four polyvinyl chloride (PVC) matrix membrane electrodes responsive to 2 drugs affecting the urogenital systemoxybutynin hydrochloride (OX) and flavoxate hydrochloride (FX)were developed, described, and characterized. A precipitation-based technique with tungstophosphate (TP) and ammonium reineckate (R) anions as electroactive materials in a PVC matrix with an OX cation was used for electrode 1 and 2 fabrication, respectively. Electrode 3 and 4 fabrication was based on use of the precipitation technique of FX cation with tetrakis (4-chlorophenyl) borate and R anions as electroactive materials. Fast and stable Nernstian responses in the range 1 1021 106 M for the 2 drugs over the pH range 58 revealed the performance characteristics of these electrodes, which were evaluated according to International Union of Pure and Applied Chemistry recommendations. The method was applied to FX and OX in their pharmaceutical formulations and in human plasma samples. The 4 proposed sensors were found to be specific for the drugs in the presence of up to 60 of their degradation products. Validation of the method according to the quality assurance standards showed suitability of the proposed electrodes for use in the quality control assessment of these drugs. The recoveries for determination of the drugs by the 4 proposed selective electrodes were 99.5 0.5, 100.0 0.4, 99.9 0.4, and 100.1 0.4 for sensors 14, respectively. Statistical comparison between the results obtained by this method and the official method of the drugs was done, and no significant difference found.


2017 ◽  
Vol 100 (4) ◽  
pp. 976-984 ◽  
Author(s):  
Nisreen F Abo-Talib ◽  
Mohamed R El-Ghobashy ◽  
Marwa H Tammam

Abstract Sofosbuvir and ledipasvir are the first drugs in a combination pill to treat chronic hepatitis C virus. Simple, sensitive, and rapid spectrophotometric methods are presented for the determination of sofosbuvir and ledipasvir in their combined dosage form. These methods were based on direct measurement of ledipasvir at 333 nm (due to the lack of interference of sofosbuvir) over a concentration range of 4.0–14.0 µg/mL, with a mean recovery of 100.78 ± 0.64%. Sofosbuvir was determined, without prior separation, by third-derivative values at 281 nm; derivative ratio values at 265.8 nm utilizing 5.0 µg/mL ledipasvir as a divisor; the ratio difference method using values at 270 and 250 nm using 5.0 µg/mL ledipasvir as a divisor; and the ratio subtraction method using values at 261 nm. These methods were found to be linear for sofosbuvir over a concentration range of 5.0–35.0 µg/mL. The suggested methods were validated according to International Conference on Harmonization guidelines. Statistical analysis of the results showed no significant difference between the proposed methods and the manufacturer's LC method of determination with respect to accuracy and precision. These methods were used to compare the equivalence of an innovator drug dosage form and two generic drug dosage forms of the same strength.


2005 ◽  
Vol 88 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Mostafa A Shehata ◽  
Mohammad A El-Sayed ◽  
Mohammad G El-Bardicy ◽  
Mohammad F El-Tarras

Abstract A first-derivative spectrophotometric (1D) method and a derivative-ratio zero-crossing spectrophotometric (1DD) method were used to determine pyritinol dihydrochloride (I) in the presence of its precursor (II) and its degradation product (III) with 0.1N hydrochloric acid as a solvet. Linear relationships were obtained in the ranges of 6–22 μg/mL for the (1D) method and 6–20 μg/mL for the (1DD) method. By applying the proposed methods, it was possible to determine pyritinol dihydrochloride in its pure powdered form with an accuracy of 100.36 ± 1.497% (n = 9) for the (1D) method and an accuracy of 99.92 ± 1.172% (n = 8) for the (1DD) method. Laboratory-prepared mixtures containing different ratios of (I), (II), and (III) were analyzed, and the proposed methods were valid for concentrations of ≤10% (II) and ≤50% (III). The proposed methods were validated and found to be suitable as stability-indicating assay methods for pyritinol in pharmaceutical formulations.


2016 ◽  
Vol 2 (1) ◽  
pp. 09
Author(s):  
Pandurang Tukaram Mane

Simple, fast and reliable spectrophotometric methods were developed for determination of Levocetirizine in bulk and pharmaceutical dosage forms. The solutions of standard and the sample were prepared in Methanol. The quantitative determination of the drug was carried out using the second order Derivative Area under Curve method values measured at 235-243 nm. Calibration graphs constructed at their wavelengths of determination were linear in the concentration range of Levocetirizine using 5-25?g/ml (r=0.9994) for first order Derivative Area under Curve spectrophotometric method. The proposed methods have been extensively validated as per ICH guidelines. There was no significant difference between the performance of the proposed methods regarding the mean values and standard deviations. The developed methods were successfully applied to estimate the amount of Levocetirizine in pharmaceutical formulations.


2015 ◽  
Vol 1 (7) ◽  
pp. 308
Author(s):  
Rekha Sudam Kharat

Simple, fast and reliable spectrophotometric methods were developed for determination of Tramadol Hydrochloride in bulk and pharmaceutical dosage forms. The solutions of standard and the sample were prepared in Distilled Water. The quantitative determination of the drug was carried out using the second order Derivative Area under Curve method values measured at 272-280nm. Calibration graphs constructed at their wavelengths of determination were linear in the concentration range of Tramadol Hydrochloride using 2-10?g/ml (r=0.9925) for second order Derivative Area under Curve spectrophotometric method. All the proposed methods have been extensively validated as per ICH guidelines. There was no significant difference between the performance of the proposed methods regarding the mean values and standard deviations. The developed methods were successfully applied to estimate the amount of Tramadol Hydrochloride in pharmaceutical formulations.


2015 ◽  
Vol 1 (5) ◽  
pp. 217
Author(s):  
Shivaji Shinde ◽  
Santosh Jadhav ◽  
Rekha Kharat ◽  
Afaque Ansari ◽  
Ashpak Tamboli

Simple, fast and reliable spectrophotometric methods were developed for determination of Ofloxacin in bulk and pharmaceutical dosage forms. The solutions of standard and the sample were prepared in Methanol. The quantitative determination of the drug was carried out using the second order Derivative Area under Curve method values measured at 295-301nm. Calibration graphs constructed at their wavelengths of determination were linear in the concentration range of Ofloxacin using 2-10?g/ml (r=0.9947) for second order Derivative Area under Curve spectrophotometric method. All the proposed methods have been extensively validated as per ICH guidelines. There was no significant difference between the performance of the proposed methods regarding the mean values and standard deviations. The developed methods were successfully applied to estimate the amount of Ofloxacin in pharmaceutical formulations.


Sign in / Sign up

Export Citation Format

Share Document