NON LINEAR ANALYSIS OF SHIP MOTIONS AND LOADS IN LARGE AMPLITUDE WAVES

2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
G Mortola ◽  
A Incecik ◽  
O Turan ◽  
S.E. Hirdaris

A non linear time domain formulation for ship motions and wave loads is presented and applied to the S175 containership. The paper describes the mathematical formulations and assumptions, with particular attention to the calculation of the hydrodynamic force in the time domain. In this formulation all the forces involved are non linear and time dependent. Hydrodynamic forces are calculated in the frequency domain and related to the time domain solution for each time step. Restoring and exciting forces are evaluated directly in time domain in a way of the hull wetted surface. The results are compared with linear strip theory and linear three dimensional Green function frequency domain seakeeping methodologies with the intent of validation. The comparison shows a satisfactory agreement in the range of small amplitude motions. A first approach to large amplitude motion analysis displays the importance of incorporating the non linear behaviour of motions and loads in the solution of the seakeeping problem.

1998 ◽  
Vol 42 (02) ◽  
pp. 139-153 ◽  
Author(s):  
N. Fonseca ◽  
C. Guedes Soares

The vertical motions and wave induced loads on ships with forward speed are studied in the time domain, considering non-linear effects associated with large amplitude motions and hull flare shape. The method is based on a strip theory, using singularities distributed on the cross sections which satisfy the linear free surface condition. The solution is obtained in the time domain using convolution to account for the memory effects related to the free surface oscillations. In this way the linear radiation forces are represented in terms of impulse response functions, infinite frequency added masses and radiation restoring coefficients. The diffraction forces associated with incident wave scattering are linear. The hydrostatic and Froude-Krylov forces are evaluated over the instantaneous wetted surface of the hull to account for the large amplitude motions and hull flare. The radiation contribution for wave loads is also obtained in the time domain using convolution to account for the memory effects related to the free surface oscillations. Results of motions and wave loads for the S175 container ship are presented and analyzed. The results from the present method are compared with linear results.


Author(s):  
Fabien Bigot ◽  
François-Xavier Sireta ◽  
Eric Baudin ◽  
Quentin Derbanne ◽  
Etienne Tiphine ◽  
...  

Ship transport is growing up rapidly, leading to ships size increase, and particularly for container ships. The last generation of Container Ship is now called Ultra Large Container Ship (ULCS). Due to their increasing sizes they are more flexible and more prone to wave induced vibrations of their hull girder: springing and whipping. The subsequent increase of the structure fatigue damage needs to be evaluated at the design stage, thus pushing the development of hydro-elastic simulation models. Spectral fatigue analysis including the first order springing can be done at a reasonable computational cost since the coupling between the sea-keeping and the Finite Element Method (FEM) structural analysis is performed in frequency domain. On the opposite, the simulation of non-linear phenomena (Non linear springing, whipping) has to be done in time domain, which dramatically increases the computation cost. In the context of ULCS, because of hull girder torsion and structural discontinuities, the hot spot stress time series that are required for fatigue analysis cannot be simply obtained from the hull girder loads in way of the detail. On the other hand, the computation cost to perform a FEM analysis at each time step is too high, so alternative solutions are necessary. In this paper a new solution is proposed, that is derived from a method for the efficient conversion of full scale strain measurements into internal loads. In this context, the process is reversed so that the stresses in the structural details are derived from the internal loads computed by the sea-keeping program. First, a base of distortion modes is built using a structural model of the ship. An original method to build this base using the structural response to wave loading is proposed. Then a conversion matrix is used to project the computed internal loads values on the distortion modes base, and the hot spot stresses are obtained by recombination of their modal values. The Moore-Penrose pseudo-inverse is used to minimize the error. In a first step, the conversion procedure is established and validated using the frequency domain hydro-structure model of a ULCS. Then the method is applied to a non-linear time domain simulation for which the structural response has actually been computed at each time step in order to have a reference stress signal, in order to prove its efficiency.


1994 ◽  
Vol 116 (4) ◽  
pp. 781-786 ◽  
Author(s):  
C. J. Goh

The convergence of learning control is traditionally analyzed in the time domain. This is because a finite planning horizon is often assumed and the analysis in time domain can be extended to time-varying and nonlinear systems. For linear time-invariant (LTI) systems with infinite planning horizon, however, we show that simple frequency domain techniques can be used to quickly derive several interesting results not amenable to time-domain analysis, such as predicting the rate of convergence or the design of optimum learning control law. We explain a paradox arising from applying the finite time convergence criterion to the infinite time learning control problem, and propose the use of current error feedback for controlling possibly unstable systems.


Author(s):  
Wei Qiu ◽  
Hongxuan Peng

Based on the panel-free method, large-amplitude motions of floating offshore structures have been computed by solving the body-exact problem in the time domain using the exact geometry. The body boundary condition is imposed on the instantaneous wetted surface exactly at each time step. The free surface boundary is assumed linear so that the time-domain Green function can be applied. The instantaneous wetted surface is obtained by trimming the entire NURBS surfaces of a floating structure. At each time step, Gaussian points are automatically distributed on the instantaneous wetted surface. The velocity potentials and velocities are computed accurately on the body surface by solving the desingularized integral equations. Nonlinear Froude-Krylov forces are computed on the instantaneous wetted surface under the incident wave profile. Validation studies have been carried out for a Floating Production Storage and Offloading (FPSO) vessel. Computed results were compared with experimental results and solutions by the panel method.


Author(s):  
Volker Carstens ◽  
Joachim Belz

The aeroelastic behaviour of vibrating blade assemblies is usually investigated in the frequency domain where the determination of aeroelastic stability boundaries is separated from the computation of linearized unsteady aerodynamic forces. However, nonlinear fluid-structure interaction caused by oscillating shocks or strong flow separation may significantly influence the aerodynamic damping and hence effect a shift of stability boundaries. In order to investigate such aeroelastic phenomena, the governing equations of structural and fluid motion have to be simultaneously integrated in time. In this paper a technique is presented which analyzes the aeroelastic behaviour of an oscillating compressor cascade in the time domain. The structural part of the governing aeroelastic equations is time-integrated according to the algorithm of Newmark, while the unsteady airloads are computed at every time step by an Euler upwind code, The link between the two time integrations is an automatic grid generation in which the used mesh is dynamically deformed as such that it conforms with the deflected blades at every time step. The computed time series of the aeroelastic simulation of an assembly of twenty compressor blades performing torsional vibrations in transonic flow are presented. For subsonic flow, the differences between time domain and frequency domain results are of negligible order. For transonic flow, however, where vibrating shocks and a temporarily choked flow in the blade channel dominate the unsteady flow, the energy transfer between fluid and structure is no longer comparable to that of a linear system. It is demonstrated that the application of the time domain method leads to a significantly different aeroelastic behaviour of the blade assembly including a shift of the stability boundary.


1998 ◽  
Vol 11 (3) ◽  
pp. 101-123 ◽  
Author(s):  
Jinzhu Xia ◽  
Zhaohui Wang ◽  
J.Juncher Jensen

Author(s):  
Maxime Philippe ◽  
Aure´lien Babarit ◽  
Pierre Ferrant

Time domain simulations of an offshore floating wind turbine have been performed. Hydrodynamic impulse responses of the floating platform are calculated with linear hydrodynamic simulation tool ACHIL3D. A user defined module for the wind turbine design code FAST has been developed to calculate hydrodynamic and mooring loads on the structure. Resolution of the movements of the system is done with FAST. Simulation results in time domain are compared with frequency domain results. In the frequency domain model, the whole system is linearized. In the time domain model, the wind turbine model is not linearized. A good agreement between time and frequency domain calculations is observed, even for the pitch motion. Furthermore we observe a non linearity in the response of sway, roll and yaw degrees of freedom around 0.3 rad.s-1. The effect of viscous damping on the movements of the floating wind turbine system has been studied with the time domain model, and a non linear hydrostatic and Froude-Krylov load model has been developed. Effects of these non linear terms are shown.


Sign in / Sign up

Export Citation Format

Share Document