scholarly journals THE INFLUENCE OF FORWARD SPEED AND NONLINEARITIES ON THE DYNAMIC BEHAVIOUR OF A CONTAINER SHIP IN REGULAR WAVES

2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
A Chapchap ◽  
D A Hudson ◽  
P Temarel ◽  
T M Ahmed ◽  
S E Hirdaris

The aim of this paper is to compare the heave and pitch motions for the S175 containership, travelling in head regular waves, obtained from frequency domain linear and time domain partly nonlinear potential flow analyses. The frequency domain methods comprise the pulsating and the translating, pulsating Green’s function methods, with the relevant source distribution over the mean wetted surface of the hull. The time domain method uses the radiation and diffraction potentials related to the mean wetted surface, implemented using Impulse Response Functions (IRF), whilst the incident wave and restoring actions are evaluated on the instantaneous wetted surface. The calculations are carried out for a range of Froude numbers, and in the case of the partly nonlinear method for different wave steepness values. Comparisons are made with available experimental measurements. The discussion focuses on the necessity for a nonlinear approach for predicting the radiation potential and the possible numerical methods for its formulation.

Author(s):  
Ajit C. Pillai ◽  
Philipp R. Thies ◽  
Lars Johanning

This paper explores geometry optimization of an offshore wind turbine’s mooring system considering the minimization of the material cost and the cumulative fatigue damage. A comparison of time domain simulations against frequency domain simulations is made to explore the suitability of these methods to the design process. The efficient design options, the Pareto front, from the frequency domain study are also re-evaluated using time domain simulations and compared against the time domain Pareto front. Both the time and frequency domain results show optimal results utilizing similar design philosophies, however, the frequency domain methods severely under predict the fatigue loads in the mooring system and incorrectly class infeasible solutions as feasible. The frequency domain is therefore not suitable for optimization use without some external means of applying engineering constraints. Furthermore, re-evaluation of the frequency domain solutions provides guidance to the uncertainty and the necessary design fatigue factors required if implementing frequency domain methods in design.


Author(s):  
Simon R. Stow ◽  
Ann P. Dowling

Lean premixed prevaporised (LPP) combustion can reduce NOx emissions from gas turbines, but often leads to combustion instability. Acoustic waves produce fluctuations in heat release, for instance by perturbing the fuel-air ratio. These heat fluctuations will in turn generate more acoustic waves and in some situations linear oscillations grow into large amplitude self-sustained oscillations. The resulting limit cycles can cause structural damage. Thermoacoustic oscillations will have a low amplitude initially. Thus linear models can describe the initial growth and hence give stability predictions. An unstable linear mode will grow in amplitude until nonlinear effects become sufficiently important to achieve a limit cycle. While the frequency of the linear mode can often provide a good approximation to that of the resulting limit cycle, linear theories give no prediction of its resulting amplitude. In previous work, we developed a low-order frequency-domain method to model thermoacoustic limit cycles in LPP combustors. This was based on a ‘describing function’ approach and is only applicable when there is a dominant mode and the main nonlinearity is in the combustion response to flow perturbations. In this paper that method is extended into the time domain. The main advantage of the time-domain approach is that limit-cycle stability, the influence of harmonics, and the interaction between different modes can be simulated. In LPP combustion, fluctuations in the inlet fuel-air ratio have been shown to be the dominant cause of unsteady combustion: these occur because velocity perturbations in the premix ducts cause a time-varying fuel-air ratio, which then convects downstream. If the velocity perturbation becomes comparable to the mean flow, there will be an amplitude-dependent effect on the equivalence ratio fluctuations entering the combustor and hence on the rate of heat release. Since the Mach number is low, the velocity perturbation can be comparable to the mean flow, with even reverse flow occurring, while the disturbances are still acoustically linear in that the pressure perturbation is still much smaller than the mean. Hence while the combustion response to flow velocity and equivalence ratio fluctuations must be modelled nonlinearly, the flow perturbations generated as a result of the unsteady combustion can be treated as linear. In developing a time-domain network model for nonlinear thermoacoustic oscillations an initial frequency-domain calculation is performed. The linear network model, LOTAN, is used to categorise the combustor geometry by finding the transfer function for the response of flow perturbations (at the fuel injectors, say) to heat-release oscillations. This transfer function is then converted into the time domain through an inverse Fourier transform to obtain the Green’s function, which thus relates unsteady flow to heat release at previous times. By combining this with a nonlinear flame model (relating heat release to unsteady flow at previous times) a complete time-domain solution can be found by stepping forward in time. If an unstable mode is present, its amplitude will initially grow exponentially (in accordance with linear theory) until saturation effects in the flame model become significant, and eventually a stable limit cycle will be attained. The time-domain approach enables determination of the limit-cycle. In addition, the influence of harmonics and the interaction and exchange of energy between different modes can be simulated. These effects are investigated for longitudinal and circumferential instabilities in an example combustor system and results are compared to frequency-domain limit-cycle predictions.


Author(s):  
Ying Min Low ◽  
Robin S. Langley

The recognition of the need for a fully coupled analysis of deepwater floating production systems has led to the research and development of several coupled analysis tools in recent years. Barring a handful of exceptions, these tools and available commercial packages are invariably in the time domain. This has resulted in a much better understanding and confidence in time domain coupled analysis, but less so for the frequency domain approach. In this paper, the viability of frequency domain coupled analysis is explored by performing a systematic comparison of time and frequency domain methods using computer programs developed in-house. In both methods, a global coordinate system is employed where the vessel is modeled with six degrees-of-freedom, while the mooring lines and risers are discretized as lumped masses connected by extensional and rotational springs. Coupling between the vessel and the mooring lines is achieved by stiff springs, and the influence of inertia and damping from the lines are directly accounted for without the need for prior assumptions. First and second order wave forces generated from a random environment are applied on the vessel, as well as drag and inertia loading on the lines. For the time domain simulation, the Wilson-theta implicit integration scheme is employed to permit the use of relatively large time steps. The frequency domain analysis is highly efficient despite being formulated in global coordinates, owing to the banded characteristics of the mass, damping and stiffness matrices. The nonlinear drag forces are stochastically linearized iteratively. As both the time and frequency domain models of the coupled system are identical, a consistent assessment of the error induced by stochastic linearization can be made.


Econometrics ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 35 ◽  
Author(s):  
D. Pollock

Econometric analysis requires filtering techniques that are adapted to cater to data sequences that are short and that have strong trends. Whereas the economists have tended to conduct their analyses in the time domain, the engineers have emphasised the frequency domain. This paper places its emphasis in the frequency domain; and it shows how the frequency-domain methods can be adapted to cater to short trended sequences. Working in the frequency domain allows an unrestricted choice to be made of the frequency response of a filter. It also requires that the data should be free of trends. Methods for extracting the trends prior to filtering and for restoring them thereafter are described.


Author(s):  
Safia Abdullah Al Fadhel, Amal Al-Ser Al-khadir, Obeid Mahmo

:   This paper takes into account the application of the Periodogram and the Fourier Series Analysis. It is one of the non-parametric methods of Frequency domain analysis or spectral analysis of time series using Gas sales data in the United States of America from 1993-2014. In order to achieve these objectives، the data were obtained and then the Periodogram and the Fourier series methods were used to analyze the data. Based on the analysis، the cycle of variability within the period under study was 135 months، and a high Accuracy data model was estimated for the Fourier series which included trend، seasonal and error components. The RMSE، MASE and MAE standards were used to confirm the efficiency of the model and the model was then used to predict gas sales for six months، and we have 90% 95% confidence intervals for predictions. In addition، a time domain analysis was provided for the data series using Bok Jenkins method to obtain the appropriate ARMA model and to generate Predictions. Finally، a comparison was made between the accuracy measures of the time domain and frequency domain methods The frequency domain method competed with the time domain and the slight difference in efficiency.


Author(s):  
Ying Min Low ◽  
Andrew J. Grime

In the dynamic analysis of a floating structure, coupled analysis refers to a procedure in which the vessel, moorings, and risers are modeled as a whole system, thus allowing for interactions between various system components. Because coupled analysis in the time domain is impractical owing to prohibitive computational costs, a highly efficient frequency domain approach was developed in a previous work, wherein the drag forces are linearized. The study showed that provided the geometric nonlinearity of the moorings/risers is insignificant, which often holds for ultradeepwater systems, the mean-squared responses yielded by the time and frequency domain methods are in close agreement. Practical design is concerned with the extreme response, for which the mean upcrossing rate is a key parameter. Crossing rate analysis based on statistical techniques is complicated as the total response occurs at two timescales, with the low frequency contribution being notably non-Gaussian. Many studies have been devoted to this problem, mainly relying on a technique originating from Kac and Siegert; however, these studies have mostly been confined to a single-degree-of-freedom system. The aim of this work is to apply statistical techniques in conjunction with frequency domain analysis to predict the extreme responses of the coupled system, in particular the modes with a prominent low frequency component. It is found that the crossing rates for surge, sway and yaw thus obtained agree well with those extracted from time domain simulation, whereas the result for roll is less favorable, and the reasons are discussed.


Author(s):  
Gregory A. Banyay ◽  
John C. Brigham ◽  
Evgenii Rudnyi

During the operation of a Nuclear Steam Supply System (NSSS), the possibility exists for certain thermal transients to occur in the Reactor Coolant System (RCS). These transients exhibit some amount of periodicity in terms of temperature versus time. The current method of solving for temperature or thermal-mechanical stress states in the nuclear pressure vessel industry is by solving the governing equations in the time domain. For some analytical situations, significant computational savings could be realized by solving the thermal transient problem in the frequency domain. That is, the time, memory, and disk space required to solve the analysis is much less in the frequency domain than in the time domain. Two frequency domain methods are discussed in this paper. First, a Laplace-based model order reduction approach is applied to a reactor vessel component subjected to a representative thermal transient. Second, the feasibility of a Fourier-based spectral approach is discussed. For transient thermal analysis, it is shown that by employing model order reduction, significant computational savings can be realized with insignificant compromise in the accuracy of results.


Author(s):  
Yuelin Tan ◽  
Yanlin Shao ◽  
Robert Read

Abstract In this paper, a coupled numerical model in the time domain has been developed to study the interaction between interior liquid sloshing and the motion of a cylindrical closed fish cage when the cage is exposed to regular waves. The single-dominant nonlinear multimodal theory for sloshing in a cylindrical cage presented in [1] was implemented to simulate the liquid responses in the cage. A time-domain simulator based on the Cummins formulation of the equations of motion [2] is used to solve for the cage motion, while WAMIT is used to provide all required frequency-domain hydrodynamic coefficients for the external diffraction/radiation problems. Details of the coupling between cage motion and sloshing will be presented. The coupled solver is verified against the linear frequency-domain solution from WAMIT for the very small wave steepness, where linear theory is valid. The results show that the sloshing effect is a vital factor in the coupling process, which means that the liquid in the closed cage cannot be treated as a solid mass. This is particularly true close to the resonant frequencies of the liquid in the tank. Furthermore, the importance of nonlinearity due to sloshing responses is investigated by applying incident waves with different steepness. When the cage is exposed to regular waves, if certain criteria are met, nonlinear swirling waves are observed in the closed cage. The nonlinear swirling waves are due to the interactions between different sloshing modes, which can only be explained by a proper nonlinear theory, such as the multimodal theory applied in this study. The influence of the swirling waves on the cage motions will also be discussed in the paper. How this effect will impact the design of a closed fish cage and its mooring system can only be answered by studying the cage responses in irregular waves, which is the subject of ongoing research.


Author(s):  
C. Armstrong ◽  
Y. Drobyshevski ◽  
C. Chin

Response Based Analysis (RBA) is an advanced method for the prediction of long term distributions of critical responses in offshore floating systems. For complex non-linear systems such as flexible risers, RBA requires time domain simulations that form the core data to which probabilistic models are applied. Because RBA requires significantly larger amounts of data than traditional short term analysis approaches, running the required number of simulations in the time domain can quickly become unfeasible if the system’s physics being modelled are exceedingly complex. In addition, flexible risers are complex composite structures with highly dynamic, non-linear responses which further limit the feasibility of application of the RBA process to these systems. As an alternative, frequency domain solvers, such as that used in the OrcaFlex software, are potential substitutes for portions of datasets due to their processing times being significantly faster than time domain solvers. A comparison of extreme responses generated by frequency and time domain solvers was performed over the duration of two storms. An upper threshold limit for the frequency domain’s accuracy was found by comparing the differences of the two solver’s responses as the storm progressed; where the differences became too large the threshold limit was set. For environmental conditions smaller than this threshold, the frequency domain solver may provide a quicker method for predicting the riser responses. Conditions that exceed this threshold require full time domain analysis for accurate responses to be generated. Limitations of the frequency domain solvers include their reduced ability to deal with non-linear mechanics such as bending/curvature responses. As a result, curvature component results from the frequency domain are limited in their direct usability, especially when exposed to more extreme metocean conditions and locations along the riser that are subject to larger curvature (generally where risers are connected to structures with greater stiffness). Although these limitations exist, the frequency domain solver may still provide reasonable insight into metocean conditions that potentially cause extreme responses. A method is proposed for the use of both frequency and time domain simulations in the flexible riser flowline RBA process. Screening, filtering and ‘stitching’ methods utilizing the speed of the frequency domain solver are presented in order to compensate for the time domain’s extensive computation times. The proposed method of stitching, when applied to an example storm history, required 39% of the processing time when using only the time domain solver.


Author(s):  
Ying Min Low ◽  
Andrew J. Grime

In the dynamic analysis of a floating structure, coupled analysis refers to a procedure in which the vessel, moorings and risers are modeled as a whole system, thus allowing for the interactions between the various system components. Because coupled analysis in the time domain is impractical owing to prohibitive computational costs, a highly efficient frequency domain approach was developed in a previous work, wherein the drag forces are linearized. The study showed that provided the geometric nonlinearity of the moorings/risers is insignificant, which often holds for ultra-deepwater systems, the mean-squared responses yielded by the time and frequency domain methods are in close agreement. Practical design is concerned with the extreme response, for which the mean upcrossing rate is a key parameter. Crossing rate analysis based on statistical techniques is complicated as the total response occurs at two timescales, with the low frequency contribution being notably non-Gaussian. Many studies have been devoted to this problem, mainly relying on a technique originating from Kac and Siegert; however, these studies have mostly been confined to a single-degree-of-freedom system. The aim of this work is to apply statistical techniques in conjunction with frequency domain analysis to predict the extreme responses of the coupled system, in particular the modes with a prominent low frequency component. It is found that the crossing rates for surge, sway and yaw thus obtained agree well with those extracted from time domain simulation, whereas the result for roll is less favorable, and the reasons are discussed.


Sign in / Sign up

Export Citation Format

Share Document