ON THE STABILITY OF FAST FERRY IN DAMAGE SCENARIOS

2021 ◽  
Vol 157 (A3) ◽  
Author(s):  
M Acanfora ◽  
F De Luca

The ro-ro ships are characterized by a large garage compartment extending from stern to bow. Damage conditions, heavy weather and large floodable spaces could create serious accidents, with the loss of life and goods at sea, both for conventional ferries and fast ferries. The occurred accidents showed the need of a more accurate approach to the damaged ship stability in waves, also in head sea and following sea conditions, because of the great movements of water on the car deck. With this aim a tool for analysing the ship response in wave with damaged compartments has been developed and applied on a typical fast ferry. The ship dynamic is simulated in time domain, including non-linear effects, taking into account critical scenarios on the damaged ship. The applications regard ship grounding, assuming head sea, modelled by regular wave. In addition to that, also the particularly critical condition of a transversal wind heeling moment has been applied to compute non symmetrical behaviour. Moreover the stability problems arising from the presence of trapped water in the garage compartment are investigated assuming the same environmental scenarios.

2015 ◽  
Vol 157 (A3) ◽  
pp. 153-160

"The ro-ro ships are characterized by a large garage compartment extending from stern to bow. Damage conditions, heavy weather and large floodable spaces could create serious accidents, with the loss of life and goods at sea, both for conventional ferries and fast ferries. The occurred accidents showed the need of a more accurate approach to the damaged ship stability in waves, also in head sea and following sea conditions, because of the great movements of water on the car deck. With this aim a tool for analysing the ship response in wave with damaged compartments has been developed and applied on a typical fast ferry. The ship dynamic is simulated in time domain, including non-linear effects, taking into account critical scenarios on the damaged ship. The applications regard ship grounding, assuming head sea, modelled by regular wave. In addition to that, also the particularly critical condition of a transversal wind heeling moment has been applied to compute non symmetrical behaviour. Moreover the stability problems arising from the presence of trapped water in the garage compartment are investigated assuming the same environmental scenarios."


2019 ◽  
Vol 13 (14) ◽  
pp. 2470-2479 ◽  
Author(s):  
Leonardo Pantoli ◽  
Domenico Spina ◽  
Daniele Romano ◽  
Giulio Antonini ◽  
Giorgio Leuzzi ◽  
...  

Author(s):  
Pablo Zanocco ◽  
Dari´o Delmastro ◽  
Marcelo Gime´nez

The stability of a self-pressurized, integral reactor cooled by natural circulation is analyzed. CAREM reactor prototype is taken as reference for the present study. Because of the self-pressurization condition, the system is very close to saturation, and some boiling occurs along the hot leg - reactor core and riser -. Possible instabilities caused by this condition are analyzed in this work in the nominal pressure, with special attention to some particular issues of this design. A numerical code is developed to describe the reactor dynamics and it is briefly described. It includes the coolant with a one-dimensional scheme, steam dome and core modelling, considering the flashing phenomena, neutronic and pressure feedbacks. The code numerically solves the whole set of non-linear equations in a time-domain approach; it also includes a linearization method by numerical perturbations, then a classical frequency-domain stability analysis can be also carried out for the linearized system, by means of eigenvalues calculation. The amplification factor for the oscillation is plotted in the core power/steam dome condensation parameter-plane. A parametric study is carried out, to analyze the influence of core dynamic and the pressure feedback due to the self-pressurization. The pressure feedback has a stabilizing effect, increasing stability for smaller steam volumes. The core dynamic has a stabilizing effect when the core power and the steam dome condensation are low, and relatively destabilizing when they are higher. The stability boundary is determined, for several cases. The amplification factor is enlarged in the region where the flashing phenomenon occurs. The dynamic non-linear effects are studied by means of a time-domain approach, for selected conditions in growing and damped oscillations. The limit-cycle for the growing oscillations is determined, and the main non-linear sources are studied: the amplitude is restricted by strong non-linear effects, which appear when the boiling boundary crosses the core-riser limit, and more than one boiling point coexists at the same time, bounding the amplitude of oscillation to values that would remain un-noticed in case of being present in the reactor.


Author(s):  
Alptunc Comak ◽  
Orkun Ozsahin ◽  
Yusuf Altintas

High-speed machine tools have parts with both stationary and rotating dynamics. While spindle housing, column, and table have stationary dynamics, rotating parts may have both symmetric (i.e., spindle shaft and tool holder) and asymmetric dynamics (i.e., two-fluted end mill) due to uneven geometry in two principal directions. This paper presents a stability model of dynamic milling operations with combined stationary and rotating dynamics. The stationary modes are superposed to two orthogonal directions in rotating frame by considering the time- and speed-dependent, periodic dynamic milling system. The stability of the system is solved in both frequency and semidiscrete time domain. It is shown that the stability pockets differ significantly when the rotating dynamics of the asymmetric tools are considered. The proposed stability model has been experimentally validated in high-speed milling of an aluminum alloy with a two-fluted, asymmetric helical end mill.


2015 ◽  
Author(s):  
M Acanfora ◽  
◽  
F De Luca ◽  

1983 ◽  
Vol 20 (01) ◽  
pp. 21-25
Author(s):  
Abobakr M Radwan

A mathematical formulation of a computer-based method to evaluate the intact stability of floating structures is presented. The technique depends on describing the surface of the structure in terms of many small finite elements, which allows the analysis of complicated hull geometry, determining the hydrostatic pressure on each element for a known heel angle, and integrating the pressure forces to find the magnitude, direction, and line of action of the buoyant force. This will result in the correct location of the metacenter for small, as well as large, angles of heel. For structures of variable cross section, the position of the heeled vessel in equilibrium is defined such that the weight is balanced by the buoyant force, and only a pure righting moment associated with the heeling angle is evaluated. Formulation for the wind heeling moment is also presented. Assessment of the stability of the vessel is made from the righting and heeling moment curves in light of regulatory body rules.


1991 ◽  
Author(s):  
Barry Deakin

During the development of new stability regulations for the U.K. Department of Transport, doubt was cast over many of the assumptions made when assessing the stability of sailing vessels. In order to investigate the traditional methods a programme of work was undertaken including wind tunnel tests and full scale data acquisition. The work resulted in a much improved understanding of the behaviour of sailing vessels and indeed indicated that the conventional methods of stability assessment are invalid, the rules now applied in the U.K. being very different to those in use elsewhere. The paper concentrates on the model test techniques which were developed specifically for this project but which will have implications to other vessel types. The tests were of two kinds: measurement of the wind forces and moments on a sailing vessel; and investigation of the response of sailing vessels to gusts of wind. For the force and moment measurements models were mounted in a tank of water on a six component balance and tested in a large boundary layer wind tunnel. Previous tests in wind tunnels have always concentrated on performance and the heeling moments have not normally been measured correctly. As the measurements of heeling moment at a range of heel angles was of prime importance a new balance and mounting system was developed which enabled the above water part of the vessel to be modelled correctly, the underwater part to be unaffected by the wind, and the interface to be correctly represented without interference. Various effects were investigated including rig type, sheeting, heading, heel angle and wind gradient. The gust response tests were conducted with Froude scaled models floating in a pond set in the wind tunnel floor. A mechanism was installed in the tunnel which enabled gusts of various characteristics to be generated, and the roll response of the models was measured with a gyroscope. These tests provided information on the effects of inertia, damping, rolling and the characteristics of the gust. Sample results are presented to illustrate the uses to which these techniques have been put.


Author(s):  
Gonçalo Neves Carneiro ◽  
Pedro Ribeiro

The vibrations of beams with a breathing crack are investigated taking into account geometrical non-linear effects. The crack is modeled via a function that reduces the stiffness, as proposed by Christides and Barr (One-dimensional theory of cracked Bernoulli–Euler beams. Int J Mech Sci 1984). The bilinear behavior due to the crack closing and opening is considered. The equations of motion are obtained via a p-version finite element method, with shape functions recently proposed, which are adequate for problems with abrupt localised variations. To analyse the dynamics of cracked beams, the equations of motion are solved in the time domain, via Newmark's method, and the ensuing displacements, velocities and accelerations are examined. For that purpose, time histories, projections of trajectories on phase planes, and Fourier spectra are obtained. It is verified that the breathing crack introduce asymmetries in the response, and that velocities and accelerations can be more affected than displacements by the breathing crack.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bichun Dong ◽  
Runmei Zhang ◽  
Chuanyang Yu ◽  
Huan Li

Sound field prediction has practical significance in the control of noise generated by sources in a flow, for example, the noise in aero-engines and ventilation systems. Aiming at accurate and flexible prediction of time-dependent sound field, a finite-difference wavenumber-time domain method for sound field prediction in a uniformly moving medium is proposed. The method is based on the second-order convective wave equation, and the wavenumber-time domain representation of the sound pressure field on one plane is forward propagated via a derived recursive expression. In this paper, the recursive expression is first deduced, and then numerical stability and dispersion of the proposed method are analyzed, based on which the stability condition is given and the correction of dispersion related to the transition frequency is made. Numerical simulations are conducted to test the performance of the proposed method, and the results show that the method is valid and robust at different Mach numbers.


Sign in / Sign up

Export Citation Format

Share Document