scholarly journals Bandwidth Management Mechanisms for Ethernet Passive Optical Networks with Multi-ONU Customers

Author(s):  
Oscar Jaime Ciceri Coral ◽  
Nelson Luis Saldanha Fonseca

Passive optical network (PON) is a cost-efficient access network technology to deliver broadband services. Moreover, service providers employ PONs to offer novel services. New business scenarios are, thus, envisioned in which customers owning multiple optical network units (ONUs) are connected to a single PON (multi-ONU customers). This paper proposes a dynamic bandwidth allocation (DBA) algorithm to guaranteed bandwidth for multi-ONU customers in Ethernet PONs (EPONs). It also introduces a bandwidth sharing algorithm to support cooperation among customers. Results show that the proposed algorithm can improve the overall throughput and quality of service provisioning.

2020 ◽  
Vol 17 (1) ◽  
pp. 425-433
Author(s):  
Deepa Naik ◽  
Soumyadeb Maity ◽  
Tanmay De

Integrating Passive Optical Network (PON) and Worldwide Interoperability for Microwave Access network (WiMAX)achieves universal internet connectivity at a higher data rate. Here Passive Optical Networks (PONs) are used as the backbone. Base stations in WiMAX are connected to Optical Network Units. In this work cost, routing and resource allocation related issues in hybrid networks are investigated. Light trails are used for traffic grooming. Various network topologies are used for simulation and results are obtained, compared. and analyzed. The results confirm a lower cost solution by using hybrid networks for universal connectivity.


Author(s):  
Rastislav Róka

With the emerging mobile applications and needs of ever-increasing bandwidth, it is anticipated that the next-generation passive optical network (NG-PON) with much higher bandwidth is a natural path forward to satisfy these demands and to develop valuable converged fiber-wireless access networks for wireless network operators. NG-PON systems present optical access infrastructures to support various applications of many service providers. Hybrid passive optical networks (HPON) present a necessary phase to future PON networks utilized the optical transmission medium – the optical fiber. For developing hybrid passive optical networks, there exist various architectures and directions. They are specified with emphasis on their basic characteristics. For proposing reliable and survivable architectures, traffic protection schemes must be implemented. For converging Fi-Wi passive optical networks, an integration of optical and wireless technologies into common broadband access network must be considered. Finally, the HPON network configurator as the interactive software tool is introduced.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 147 ◽  
Author(s):  
Kamran Memon ◽  
Khalid Mohammadani ◽  
Noor Ain ◽  
Arshad Shaikh ◽  
Sibghat Ullah ◽  
...  

In a typical 10G-Passive Optical Network (XG-PON), the propagation delay between the Optical Network Unit (ONU) and Optical Line Terminal (OLT) is about 0.3 ms. With a frame size of 125 μs, this amounts to three frames of data in the upstream and three frames of data in the downstream. Assuming no processing delays, the grants for any bandwidth requests reach the ONU after six frames in this request-grant cycle. Often, during this six-frame delay, the queue situation is changed drastically, as much, more data would arrive in the queue. As a result, the queued data that is delayed loses its significance due to its real-time nature. Unfortunately, almost all dynamic bandwidth allocation (DBA) algorithms follow this request-grant cycle and hence lacking in their performance. This paper introduces a novel approach for bandwidth allocation, called Demand Forecasting DBA (DF-DBA), which predicts ONU’s future demands by statistical modelling of the demand patterns and tends to fulfil the predicted demands just in time, which results in reduced delay. Simulation results indicate that the proposed technique out-performs previous DBAs, such as GigaPON access network (GIANT) and round robin (RR) employing the request-grant cycle in terms of Throughput and Packet delivery ratio (PDR). Circular buffers are introduced in statistical predictions, which produce the least delay for this novel DF-DBA. This paper, hence, opens up a new horizon of research in which researchers may come up with better statistical models to brew better and better results for Passive optical networks.


2021 ◽  
Author(s):  
Souheil Kneifati

Competition for delivering high-bandwidth "multi-play" services (video, voice, data) is on constant increase. Advanced service delivery requires a higher bandwidth pipe to the end user through passive optical network (PON) technologies. The two major PON standards GPON is an International Telecommunication Union - Telecommunication Standardization Sector (ITU-T) and EPON is a standard developed by the Institute of Electrical and Electronics Engineers (IEEE). This project compares and looks at the choices and challenges service providers face as they bring new PON technology possibilities to their customers and analyze these two standards in terms of their performance, physical properties, implementation and testing requirements. It also discusses the evolution paths for each of the standards and the challenges for such evolution. The final chapter will include the conclusions, some final thoughts, suggestions and recommendations for new projects implementation.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
N. A. M. Radzi ◽  
N. M. Din ◽  
M. H. Al-Mansoori ◽  
H. Zainol Abidin

The advantages of Ethernet passive optical network (EPON) are setting it to be a natural ubiquitous solution for the access network. In the upstream direction of EPON, the directional property of the splitter requires that the traffic flow be mitigated to avoid collision. A dynamic bandwidth allocation (DBA) scheme is desirable in optimizing the bandwidth usage further. In this paper, a global priority DBA mechanism is discussed. The mechanism aims to reduce the overall delay while enhancing the throughput and fairness. This study was conducted using MATLAB where it was compared to two other algorithms in the literature. The results show that the delay is reduced up to 59% and the throughput and fairness index are improved up to 10% and 6%, respectively.


Author(s):  
Rastislav Róka

With the emerging applications and needs of ever increasing bandwidth, it is anticipated that the Next-Generation Passive Optical Network (NG-PON) with much higher bandwidth is a natural path forward to satisfy these demands and for network operators to develop valuable access networks. NG-PON systems present optical access infrastructures to support various applications of many service providers. Therefore, some general requirements for NG-PON networks are characterized and specified. Hybrid Passive Optical Networks (HPON) present a necessary phase of the future transition between PON classes with TDM or WDM multiplexing techniques utilized on the optical transmission medium – the optical fiber. Therefore, some specific requirements for HPON networks are characterized and presented. For developing hybrid passive optical networks, there exist various architectures and directions. They are also specified with emphasis on their basic characteristics and distinctions. Finally, the HPON network configurator as the interactive software tool is introduced in this chapter. Its main aim is helping users, professional workers, network operators and system analysts to design, configure, analyze, and compare various variations of possible hybrid passive optical networks. Some of the executed analysis is presented in detail.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Li Li ◽  
Li Hong-Jie

AbstractFor the commercial wavelength division multiplexing passive optical network (WDM-PON) with standard single-mode fiber SSMF-28 and 1:64 passive fiber branching at its far end (RN) and 100 GHz C-band continuous wavelength (CW) lasers, the maximum coverage and optimal transmission power of STM-16 and STM-64 with external modulators at different speeds and wave numbers (4λ, 8λ and 16λ) are obtained, respectively. The performance parameter of the high data rate WDM-PON system is analyzed with respect to a number of channels and reach. In order to improve the network utilization and receiving efficiency, the influence of different channels and transmission distances on the performance of high data rate WDM-PON system is analyzed. Simulation analysis with Optisystem15.0. The maximum transmission power required to achieve the maximum transmission distance under the condition of nonlinear constraints is obtained. In order to save power consumption, the configuration of each multi-band PON is optimized in terms of transmission power. It is found that WDM-PON system has to compromise between aggregated data rate and system reach. Future software defined access network reconfigure the access network depending on the dynamic demand and the resources available. Hence depending on the distance between the optical line terminal (OLT) and optical network unit (ONU) guaranteed data rate can be estimated. ONU is equipped with a tunable optical filter (TOF) hence future wavelength can be reconfigured by both service provider and user. It makes it possible for software to customize optical access network.


2014 ◽  
Vol 631-632 ◽  
pp. 795-800
Author(s):  
Fang Miao ◽  
Li Feng

This paper proposes an alternative solution for Long-Reach Ethernet passive optical networks. The proposed scheme enables directly communication between ONUs for the transmission of local traffic and control messages, and each ONU calculates bandwidth allocation independently without participation of OLT to remedy the long propagation delay of LR-PON. This scheme also supports centralized control by OLT to change ONUs’ parameters synchronously. Simulation results show that this scheme can effectively reduce the end-to-end packet delay, while maintaining high throughput in uplink channel.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Ankur Singhal ◽  
Amit Gupta ◽  
Charanjeet Singh

Abstract Hybrid wavelength division multiplexed (WDM)/Time division multiplexed (TDM) virtual passive optical networks (VPONs) are considered to provide cost efficient solutions for ever increasing bandwidth requirements of next generation optical access networks. With the development in technology effective bandwidth assignment has emerged as a major concern area. In this paper a novel heavy load optimized dynamic bandwidth allocation algorithm (HLO-DBA) is proposed for the hybrid WDM/TDM VPONs. Multi point control protocol of Ethernet passive optical network (EPON) is implemented for WDM/TDM VPONs subscribers. The excess bandwidth of lightly loaded subscribers is distributed among heavily loaded users through an efficient mechanism. The proposed technique effectively utilize the idle period between the last transmitted REPORT messages from previous transmission cycle (t-1) to the first GRANT message in the current cycle (t). Optical network units (ONUs) connecting the subscribers are scheduled in such a way so as to reduce the wastage of bandwidth. Performance evaluation of HLO-DBA in terms of quality of service (QOS) metrics like throughput and average delay is done to validate the optimization of the proposed mechanism.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 762 ◽  
Author(s):  
Pavel Sikora ◽  
Tomas Horvath ◽  
Petr Munster ◽  
Vaclav Oujezsky

Sophisticated dynamic bandwidth allocation (DBA) algorithms can dramatically improve or worsen throughput and delay in whole networks. It is very important to choose the right DBA algorithm. Our work tests static assignment and three DBA algorithms, namely GigaPON Access Network DBA, Hybrid Reporting Allocation, and modified Max–Min Fair. All tests were made on our simulator of ten-gigabit passive optical network DBA specially developed for testing DBA algorithms. The tests verify delay of each optical network unit and amount of waste with bandwidth. This paper describes how the used DBA algorithms work and the processes involved in DBA algorithms.


Sign in / Sign up

Export Citation Format

Share Document