scholarly journals "LeukNet" - A Model of Convolutional Neural Network for the Diagnosis of Leukemia

Author(s):  
Luis H. S. Vogado ◽  
Rodrigo M. S. Veras ◽  
Kelson R. T. Aires

Leukemia is a disorder that affects the bone marrow, causing uncontrolled production of leukocytes, impairing the transport of oxygen and causing blood coagulation problems. In this article, we propose a new computational tool, named LeukNet, a Convolutional Neural Network (CNN) architecture based on the VGG-16 convolutional blocks, to facilitate the leukemia diagnosis from blood smear images. We evaluated different architectures and fine-tuning methods using 18 datasets containing 3536 images with distinct characteristics of color, texture, contrast, and resolution. Additionally, data augmentation operations were applied to increase the training set by up to 20 times. The k-fold cross-validation (k = 5) results achieved 98.28% of accuracy. A cross-dataset validation technique, named LeaveOne-Dataset-Out Cross-Validation (LODOCV), is also proposed to evaluate the developed model’s generalization capability. The accuracy of using LODOCV on the ALL-IDB 1, ALL-IDB 2, and UFG datasets was 97.04%, 82.46%, and 70.24%, respectively, overcoming the current state-of-the-art results and offering new guidelines for image-based computer-aided diagnosis (CAD) systems in this area.

2021 ◽  
pp. 1-10
Author(s):  
Gayatri Pattnaik ◽  
Vimal K. Shrivastava ◽  
K. Parvathi

Pests are major threat to economic growth of a country. Application of pesticide is the easiest way to control the pest infection. However, excessive utilization of pesticide is hazardous to environment. The recent advances in deep learning have paved the way for early detection and improved classification of pest in tomato plants which will benefit the farmers. This paper presents a comprehensive analysis of 11 state-of-the-art deep convolutional neural network (CNN) models with three configurations: transfers learning, fine-tuning and scratch learning. The training in transfer learning and fine tuning initiates from pre-trained weights whereas random weights are used in case of scratch learning. In addition, the concept of data augmentation has been explored to improve the performance. Our dataset consists of 859 tomato pest images from 10 categories. The results demonstrate that the highest classification accuracy of 94.87% has been achieved in the transfer learning approach by DenseNet201 model with data augmentation.


2021 ◽  
Vol 71 (2) ◽  
pp. 200-208
Author(s):  
Narendra Kumar Mishra ◽  
Ashok Kumar ◽  
Kishor Choudhury

Ships are an integral part of maritime traffic where they play both militaries as well as non-combatant roles. This vast maritime traffic needs to be managed and monitored by identifying and recognising vessels to ensure the maritime safety and security. As an approach to find an automated and efficient solution, a deep learning model exploiting convolutional neural network (CNN) as a basic building block, has been proposed in this paper. CNN has been predominantly used in image recognition due to its automatic high-level features extraction capabilities and exceptional performance. We have used transfer learning approach using pre-trained CNNs based on VGG16 architecture to develop an algorithm that performs the different ship types classification. This paper adopts data augmentation and fine-tuning to further improve and optimize the baseline VGG16 model. The proposed model attains an average classification accuracy of 97.08% compared to the average classification accuracy of 88.54% obtained from the baseline model.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2989
Author(s):  
Luis Vogado ◽  
Rodrigo Veras ◽  
Kelson Aires ◽  
Flávio Araújo ◽  
Romuere Silva ◽  
...  

Leukaemia is a dysfunction that affects the production of white blood cells in the bone marrow. Young cells are abnormally produced, replacing normal blood cells. Consequently, the person suffers problems in transporting oxygen and in fighting infections. This article proposes a convolutional neural network (CNN) named LeukNet that was inspired on convolutional blocks of VGG-16, but with smaller dense layers. To define the LeukNet parameters, we evaluated different CNNs models and fine-tuning methods using 18 image datasets, with different resolution, contrast, colour and texture characteristics. We applied data augmentation operations to expand the training dataset, and the 5-fold cross-validation led to an accuracy of 98.61%. To evaluate the CNNs generalisation ability, we applied a cross-dataset validation technique. The obtained accuracies using cross-dataset experiments on three datasets were 97.04, 82.46 and 70.24%, which overcome the accuracies obtained by current state-of-the-art methods. We conclude that using the most common and deepest CNNs may not be the best choice for applications where the images to be classified differ from those used in pre-training. Additionally, the adopted cross-dataset validation approach proved to be an excellent choice to evaluate the generalisation capability of a model, as it considers the model performance on unseen data, which is paramount for CAD systems.


2021 ◽  
pp. 20210002
Author(s):  
Mayara Simões Bispo ◽  
Mário Lúcio Gomes de Queiroz Pierre Júnior ◽  
Antônio Lopes Apolinário Jr ◽  
Jean Nunes dos Santos ◽  
Braulio Carneiro Junior ◽  
...  

Objective: To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs). Methods: For construction of the database, we selected axial multidetector CT images from patients with confirmed AM (n = 22) and OKC (n = 18) based on a conclusive histopathological report. The images (n = 350) were segmented manually and data augmentation algorithms were applied, totalling 2500 images. The k-fold × five cross-validation method (k = 2) was used to estimate the accuracy of the CNN model. Results: The accuracy and standard deviation (%) of cross-validation for the five iterations performed were 90.16 ± 0.95, 91.37 ± 0.57, 91.62 ± 0.19, 92.48 ± 0.16 and 91.21 ± 0.87, respectively. A higher error rate was observed for the classification of AM images. Conclusion: This study demonstrated a high classification accuracy of Google Inception v3 for tomographic images of OKCs and AMs. However, AMs images presented the higher error rate.


2021 ◽  
Author(s):  
Satoshi Suzuki ◽  
Shoichiro Takeda ◽  
Ryuichi Tanida ◽  
Hideaki Kimata ◽  
Hayaru Shouno

Friction ◽  
2021 ◽  
Author(s):  
Xiaobin Hu ◽  
Jian Song ◽  
Zhenhua Liao ◽  
Yuhong Liu ◽  
Jian Gao ◽  
...  

AbstractFinding the correct category of wear particles is important to understand the tribological behavior. However, manual identification is tedious and time-consuming. We here propose an automatic morphological residual convolutional neural network (M-RCNN), exploiting the residual knowledge and morphological priors between various particle types. We also employ data augmentation to prevent performance deterioration caused by the extremely imbalanced problem of class distribution. Experimental results indicate that our morphological priors are distinguishable and beneficial to largely boosting overall performance. M-RCNN demonstrates a much higher accuracy (0.940) than the deep residual network (0.845) and support vector machine (0.821). This work provides an effective solution for automatically identifying wear particles and can be a powerful tool to further analyze the failure mechanisms of artificial joints.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jian-ye Yuan ◽  
Xin-yuan Nan ◽  
Cheng-rong Li ◽  
Le-le Sun

Considering that the garbage classification is urgent, a 23-layer convolutional neural network (CNN) model is designed in this paper, with the emphasis on the real-time garbage classification, to solve the low accuracy of garbage classification and recycling and difficulty in manual recycling. Firstly, the depthwise separable convolution was used to reduce the Params of the model. Then, the attention mechanism was used to improve the accuracy of the garbage classification model. Finally, the model fine-tuning method was used to further improve the performance of the garbage classification model. Besides, we compared the model with classic image classification models including AlexNet, VGG16, and ResNet18 and lightweight classification models including MobileNetV2 and SuffleNetV2 and found that the model GAF_dense has a higher accuracy rate, fewer Params, and FLOPs. To further check the performance of the model, we tested the CIFAR-10 data set and found the accuracy rates of the model (GAF_dense) are 0.018 and 0.03 higher than ResNet18 and SufflenetV2, respectively. In the ImageNet data set, the accuracy rates of the model (GAF_dense) are 0.225 and 0.146 higher than Resnet18 and SufflenetV2, respectively. Therefore, the garbage classification model proposed in this paper is suitable for garbage classification and other classification tasks to protect the ecological environment, which can be applied to classification tasks such as environmental science, children’s education, and environmental protection.


Author(s):  
Ramesh Adhikari ◽  
Suresh Pokharel

Data augmentation is widely used in image processing and pattern recognition problems in order to increase the richness in diversity of available data. It is commonly used to improve the classification accuracy of images when the available datasets are limited. Deep learning approaches have demonstrated an immense breakthrough in medical diagnostics over the last decade. A significant amount of datasets are needed for the effective training of deep neural networks. The appropriate use of data augmentation techniques prevents the model from over-fitting and thus increases the generalization capability of the network while testing afterward on unseen data. However, it remains a huge challenge to obtain such a large dataset from rare diseases in the medical field. This study presents the synthetic data augmentation technique using Generative Adversarial Networks to evaluate the generalization capability of neural networks using existing data more effectively. In this research, the convolutional neural network (CNN) model is used to classify the X-ray images of the human chest in both normal and pneumonia conditions; then, the synthetic images of the X-ray from the available dataset are generated by using the deep convolutional generative adversarial network (DCGAN) model. Finally, the CNN model is trained again with the original dataset and augmented data generated using the DCGAN model. The classification performance of the CNN model is improved by 3.2% when the augmented data were used along with the originally available dataset.


Sign in / Sign up

Export Citation Format

Share Document