scholarly journals A Comparison Study of Deep Convolutional Neural Networks for the Classification of Brazilian Savannah Pollen Grains: Preliminary Results

2019 ◽  
Author(s):  
Bruno Aristimunha ◽  
Felipe Silveira Brito Borges ◽  
Ariadne Barbosa Gonçalves ◽  
Hemerson Pistori

The classification of pollen grains images are currently done manually and visually, being a weariful task and predisposed to mistakes due to human exhaustion. In this paper, the authors introduce an automatic classification of 55 different pollen grain classes, using convolutional neural networks. Different architectures and hyperparameters were used to improve the classification result. Using the networks VGG16, VGG19, and InceptionV3, were obtained accuracy rates over 93.58%.

2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


2021 ◽  
Author(s):  
Veerayuth Kittichai ◽  
Morakot Kaewthamasorn ◽  
Suchansa Thanee ◽  
Rangsan Jomtarak ◽  
Kamonpob Klanboot ◽  
...  

Abstract Background: The infections of an avian malaria parasite (Plasmodium gallinaceum) in domestic chickens presents a major threat to poultry industry because it cause economical loss in both quality and quantity of meat and egg productions. Deep learning algorithms have been developed to identify avian malaria infections and classify its blood stage development. Methods: In this study, four types of deep convolutional neural networks namely Darknet, Darknet19, darknet19_448x448 and Densenet 201 are used to classify P. gallinaceum blood stages. We randomly collected dataset of 10,548 single-cell images consisting of four parasite stages from ten-infected blood films stained by Giemsa. All images were confirmed by three well-trained examiners. Results: In the model-wise comparison, the four neural network models gave us high values in the mean average precision at least 95%. Darknet can reproduce a superior performance in classification of the P. gallinaceum development stages across any other model architectures. In addition, Darknet also has best performance in multiple class-wise classification, scoring the average values of greater than 99% in accuracy, specificity, sensitivity, precision, and F1-score.Conclusions: Therefore, Darknet model is more suitable in the classification of P. gallinaceum blood stages than the other three models. The result may contribute us to develop the rapid screening tool for further assist non-expert in filed study where is lack of specific instrument for avian malaria diagnostic.


Sign in / Sign up

Export Citation Format

Share Document