MIXED CONVECTION MHD FLOW OF NANOFLUID OVER A NON-LINEAR STRETCHING SHEET WITH EFFECTS OF VISCOUS DISSIPATION AND VARIABLE MAGNETIC FIELD

Mechanika ◽  
2012 ◽  
Vol 18 (4) ◽  
Author(s):  
M. Habibi Matin ◽  
M. Dehsara ◽  
A. Abbassi
2012 ◽  
Vol 7 (1) ◽  
pp. 104-119 ◽  
Author(s):  
Meisam HABIBI MATIN ◽  
Mohammad Reza Heirani NOBARI ◽  
Pouyan JAHANGIRI

2011 ◽  
Vol 66 (5) ◽  
pp. 321-328
Author(s):  
Gözde Deǧer ◽  
Mehmet Pakdemirli ◽  
Yiǧit Aksoy

Steady state boundary layer equations of an upper convected Maxwell fluid with magnetohydrodynamic (MHD) flow are considered. The strength of the magnetic field is assumed to be variable with respect to the location. Using Lie group theory, group classification of the equations with respect to the variable magnetic field is performed. General boundary conditions including stretching sheet and injection are taken. Restrictions imposed by the boundary conditions on the symmetries are discussed. Special functional forms of boundary conditions for which similarity solutions may exist are derived. Using the symmetries, similarity solutions are presented for the case of constant strength magnetic field. Stretching sheet solutions with or without injection are presented. Effects of physical parameters on the solutions are depicted.


2021 ◽  
Vol 21 (2) ◽  
pp. 569-588
Author(s):  
KINZA ARSHAD ◽  
MUHAMMAD ASHRAF

In the present work, two dimensional flow of a hyperbolic tangent fluid with chemical reaction and viscous dissipation near a stagnation point is discussed numerically. The analysis is performed in the presence of magnetic field. The governing partial differential equations are converted into non-linear ordinary differential equations by using appropriate transformation. The resulting higher order non-linear ordinary differential equations are discretized by finite difference method and then solved by SOR (Successive over Relaxation parameter) method. The impact of the relevant parameters is scrutinized by plotting graphs and discussed in details. The main conclusion is that the large value of magnetic field parameter and wiessenberg numbers decrease the streamwise and normal velocity while increase the temperature distribution. Also higher value of the Eckert number Ec results in increases in temperature profile.


Sign in / Sign up

Export Citation Format

Share Document