scholarly journals Performance and emission characteristics of preheating corn oil methyl ester in CI Engine

Mechanika ◽  
2019 ◽  
Vol 25 (5) ◽  
pp. 413-418
Author(s):  
Gopinath Varudharajan

In the present work on unheated Corn oil methyl ester and Preheated Corn oil methyl ester is used to prepare different concentration blends with diesel, B20, B40 and B60 were used as alternative fuels in a compression ignition engine. The properties like calorific value, flash point, fire point and viscosity of these oils were determined. The viscosity of corn oils has been reduced through transterification process. The waste heat energy from the exhaust gas was reused to preheat the corn oil around 80°C by adjusting the flow rate of exhaust gas.  The performance and emission characteristics of a single cylinder, direct injection diesel engine were determined using unheated corn oil, Preheated Corn oil and diesel. Brake thermal efficiency of preheated B20 was more than other blends and unheated fuels but equal to diesel fuel. Brake specific fuel consumption, CO2 and HC of preheated B20 were less than unheated fuels and diesel. However, the NOx emission of preheated B20 was little higher than unheated fuels and diesel due to high combustion temperature. By considering the result of all the factors, preheated B20 blend was found to be a suitable alternative for diesel fuel.

Author(s):  
Sahil Gupta ◽  
Naveen Kumar ◽  
Dhruv Gupta ◽  
Manish Vaidyanathan

Oil provides energy for 95% of transportation and the demand of transport fuel continues to rise. According to the assessment of IPCC (International Panel on Climate Change) to climate change, global oil demand will rise by 60% from 75 Mb/d in 2000 to 120 Mb/d in 2030. All countries including India are grappling with the problem of meeting the ever increasing demand of transport fuel with the constraints of international commitments, legal requirements, environmental concerns, and limited resources. Hence, search for renewable fuels is becoming more and more prominent for ensuring energy security and environmental protection. This has renewed the interest of scientific community to look for alternative fuels of bio-origin which can provide a feasible environmental friendly solution with improved performance characteristics. Biodiesel is produced by a chemical process known as transesterification, by which the triglycerides are reacted with alcohols, in the presence of a catalyst, to produce fatty acid alkyl esters. For quite some time focus for production of biodiesel has shifted towards non-edible oil feedstock from the edible ones, mostly due to food security issues. One such non-edible oil, locally known as Mahua in Indian subcontinent, may be evaluated as a potential feed stock for biodiesel production. The fuel properties were found to be comparable with that of diesel fuel. In the present study, mineral diesel fuel along with 20% (v/v %) blend of Mahua oil methyl ester (MOME) was prepared for conducting experiments and the performance and emission characteristics was investigated at 5%, 10%, 15% and 20% exhaust gas recirculation (EGR) rates. Major observations drawn from the exhaustive experiments is that the brake thermal efficiency (BTE) for M20 increased in comparison to diesel baseline whereas on employing cold EGR, BTE abridged with the increase in EGR rate. Unburned Hydrocarbon and Carbon monoxide emissions as well as Smoke Opacity upsurge with increase in EGR percentage. However, a considerable decline in NOx was obtained at higher EGR levels.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7903
Author(s):  
István Péter Kondor ◽  
Máté Zöldy ◽  
Dénes Mihály

Due to the world’s growing population, the size of areas intended for food production in many countries of the world can only be achieved through severe environmental damage and deforestation, which has many other detrimental consequences in addition to accelerating global warming. By replacing the bio-content of fuels with other alternative fuels, land that is used for energy crops can also be used to grow food, thus mitigating the damaging effects of deforestation. Waste-based tire pyrolysis oil (TPO) can be a promising solution to replace the bio-proportion of diesel fuel. Since it is made from waste tires, it is also an optimal solution for recycling waste. This research shows the effect of different low-volume-percent tire pyrolyzed oil blended with diesel on the performance, fuel consumption, and emissions on a Mitsubishi S4S-DT industrial diesel engine. Four different premixed ratios of TPO were investigated (2.5%, 5%, 7.5% and 10%) as well as pyrolysis oil and 100% diesel oil; however, the following studies will only include the data from the pure diesel and the 10% TPO measurements. The experimental investigations were in an AVL electric dynamometer, the soot measurements were in an AVL (Anstalt für Verbrennungskraftmaschinen List) Micro soot sensor (MSS), and the emission measurements were in a AVL Furier-transform infrared spectroscopy (FTIR) taken. The scope of research was to investigate the effect of low volume percentage TPO on performance and emissions on a light-duty diesel engine.


Author(s):  
Balaji Venkatesan ◽  
Kaliappan Seeniappan ◽  
Ezhumalai Shanmugam ◽  
Socrates Subramanian ◽  
Jayaseelan Veerasundaram

Energy is vital to the profitable growth of every nation and to stimulate new research. Only natural resources can meet the growing energy demand in recent years, biodiesel has become very interested in the energy as well as environmental advantages that it can be combined with mineral diesel fuel in any quantity. The research focuses on the study of the replacement of diesel with a safflower methyl ester. The engine tests shall be performed using the safflower methyl ester as fuel in the DI diesel engine. The combustion, emission and performance characteristics were studied using alternative fuels and mixtures. SAfflower Methyl Ester 80% (SAME80) and SAME100 have high heat release rates. Nitrogen oxides were higher by about 50%, carbon monoxide decreased by 10%, unburnt hydrocarbon was slightly higher and the thermal efficiency was higher for the SAME than for diesel fuel.


Author(s):  
Veerbhadrappa a, b, Telgane ◽  
Sharanappa Godiganur ◽  
N. Keerthi kumar ◽  
T.K. Chandrashekar

In the present experimental investigation, the performance and emission characteristics of four stroke single cylinder water-cooled DI diesel engine using dual hybrid biodiesel is evaluated. Dual hybrid biodiesel produced from Simarouba Oil Methyl Ester (SuOME) and Jatropha Oil Methyl Ester (JOME) is used as a fuel to run the engine. Both the methyl esters are mixed in equal % and blended with diesel (B20 to B100). The fuel properties such as kinematic viscosity, calorific value, flash point, carbon residue and specific gravity were found for the prepared biodiesel. The results showed that B20 has almost closer brake thermal efficiency compared to that of the conventional diesel fuel. Except NOx, B100 has recorded very less emission of CO, CO2 and HC compared to that of diesel fuel.


Sign in / Sign up

Export Citation Format

Share Document