scholarly journals Preparation and Thermal Properties of Hexadecanol-Myristic Acid Eutectics/ Activated Carbon Composites as Shape-stabilized Phase Change Materials in Thermal Energy Storage

2021 ◽  
Author(s):  
Yanghua CHEN ◽  
Zhaohe WANG ◽  
Minrong GE ◽  
Feng ZHAO

In this study, hexadecanol-myristic acid (HD-MA) binary eutectic mixtures were adsorbed into activated carbon (AC) to prepare the composite phase transition materials(CPCMs). In the hexadecanol-myristic acid/activated carbon (HD-MA/AC) composites, the mixture of HD–MA acted as the phase change energy storage material and the AC was used as the matrix supporting material. Activated carbon is a kind of inorganic supporting material, which has developed pore structure, strong adsorption, high mechanical strength, corrosion resistance and good thermal stability. As the supporting material, activated carbon was helpful to prevent the eutectics from leakage. The chemical structure and crystal phase structure of HD-MA/AC composites were tested by FT-IR and XRD. The microstructure of the composites was observed through field emission scanning electron microscopy (FE-SEM). It was found that the organic binary eutectics were adsorbed on the surface and inside by activated carbon. Thermal properties of the composites were measured by differential scanning calorimetry (DSC). The results of performance test demonstrated that the satisfactory sample CPCM1 melted at 42.38 °C with latent heat of 76.24 J/g and solidified at 38.32 °C with latent heat of 67.08 J/g. The test results of TGA indicated that the prepared composites of hexadecanol-myristic acid/activated carbon possessed great thermal stability and high reliability. It is predicted that the shape-stabilized HD-MA/AC composites have great potential for thermal energy storage.

Author(s):  
Jamie Trahan ◽  
Sarada Kuravi ◽  
D. Yogi Goswami ◽  
Muhammad Rahman ◽  
Elias Stefanakos

As the importance of latent heat thermal energy storage increases for utility scale concentrating solar power (CSP) plants, there lies a need to characterize the thermal properties and melting behavior of phase change materials (PCMs) that are low in cost and high in energy density. In this paper, the results of an investigation of the melting temperature and latent heat of two binary high temperature salt eutectics are presented. Melting point and latent heat are analyzed for a chloride eutectic and carbonate eutectic using simultaneous Differential Scanning Calorimetry (DSC) and Thermogravimetric Analsysis (TGA). High purity materials were used and the handling procedure was carefully controlled to accommodate the hygroscopic nature of the chloride eutectic. The DSC analysis gives the values of thermal properties of the eutectics, which are compared with the calculated (expected/published) values. The thermal stability of the eutectics is also examined by repeated thermal cycling in a DSC and is reported in the paper along with a cost analysis of the salt materials.


2021 ◽  
Author(s):  
Zhaohe WANG ◽  
Yanghua CHEN

To solve the issues of flowing and leaking of myristic acid (MA) as phase change energy storage material in practical application, a novel microencapsulated composite phase change energy storage material was prepared by sol-gel method using myristic acid (MA) as core material and titanium dioxide (TiO2) as shell material. The chemical structure, crystal structure, micromorphology, phase change characteristics and thermal stability of phase change microencapsulated energy storage materials were characterized by using Fourier transform infrared spectrometer (FT-IR), X-ray diffraction analyzer (XRD), field emission scanning electron microscope (FE-SEM), differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA). The consequents illustrated that the ideal sample melted at 54.97 °C with the latent heat of 55.76 J/g and solidified at 49.85 °C with the latent heat of 54.55 J/g. In general, the prepared microencapsulated phase change materials possessed good thermal properties and thermal stabilities. It is predicted that the shape-stabilized MA/TiO2 composites have great potential for thermal energy storage.


RSC Advances ◽  
2017 ◽  
Vol 7 (36) ◽  
pp. 22170-22177 ◽  
Author(s):  
Jie Han ◽  
Songyang Liu

The addition of activated carbon (10%) effectively enhances the thermal conductivity and heat transfer properties of the MA/H-diatomite-2 composite PCM.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2462
Author(s):  
Dongyi Zhou ◽  
Jiawei Yuan ◽  
Yuhong Zhou ◽  
Yicai Liu

A novel composite phase change material (CPCM), capric–myristic acid/expanded graphite (CA–MA/EG) CPCM, was prepared by absorbing liquid CA–MA (as the phase change material (PCM)) into EG (as the substrate material) for heat storage in the backfill materials of soil-source heat pump systems. The thermal characteristics and microstructure of the novel CPCM were analyzed using differential scanning calorimetry (DSC) and scanning electronic microscopy (SEM). The thermal conductivities of CA–MA/EG CPCM were surveyed. The thermal stability of the CA–MA/EG was analyzed using thermogravimetric analysis (TGA) and thermal cycle tests. The results showed that the optimal mass content of CA–MA in CPCM was approximately 92.4% and the CA–MA was uniformly distributed in the vesicular structure of EG; the CA–MA/EG CPCM had an appropriate phase change temperature (Tm: 19.78 °C, Tf: 18.85 °C), high latent heat (Hm: 137.3 J/g, Hf: 139.9 J/g), and excellent thermostability and thermal reliability. The thermal conductivity of the CPCM was remarkably enhanced after adding EG. Therefore, the CPCMs demonstrated outstanding thermal performance and can be utilized in low-temperature latent heat thermal energy storage (LHTES) systems, such as soil-source heat pump systems.


Sign in / Sign up

Export Citation Format

Share Document