scholarly journals Effect of Fiber-matrix Interface Decohesion on the Behavior of Thermoset and Thermoplastic Composites Reinforced with Natural Fibers: A Comparative Study

2021 ◽  
Author(s):  
Imene ASSAF ◽  
Mohammed BELKHEIR ◽  
Allel MOKADDEM ◽  
Bendouma DOUMI ◽  
Ahmed BOUTAOUS

In this article, a comparative study was carried out on two types of thermosetting and thermoplastic matrices to study the effect of the fiber-matrix interface damage on the behavior of thermosetting and thermoplastic composites reinforced by the same natural alfa and wood fibers. The genetic modeling was based on the probabilistic formalism of Weibull. The results have been compared with those obtained by the nonlinear acoustic technique, the two results found to coincide perfectly. The numerical simulation also shows a good concordance with the real behavior of the materials studied, and shows that thermosetting composites are the most resistant to applied thermal stress by 21% compared to thermoplastic composites. Statistical analysis demonstrates that the correlation coefficient values found are very close to 1 (0.964 and 0.973), these values are very satisfactory, and confirm that the results obtained by the genetic model and the nonlinear acoustic technique are in very good agreement with the statistical analysis data. The experimental work presented by Antoine Le Duigou et al. and the work of Bodros et al. have shown that the use of natural fibers greatly improves the mechanical properties of composite materials.

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4603
Author(s):  
Marfa Camargo ◽  
Eyerusalem Adefrs Taye ◽  
Judith Roether ◽  
Daniel Tilahun Redda ◽  
Aldo Boccaccini

The use of ecological materials for building and industrial applications contributes to minimizing the environmental impact of new technologies. In this context, the cement and geopolymer sectors are considering natural fibers as sustainable reinforcement for developing composites. Natural fibers are renewable, biodegradable, and non-toxic, and they exhibit attractive mechanical properties in comparison with their synthetic fiber counterparts. However, their hydrophilic character makes them vulnerable to high volumes of moisture absorption, thus conferring poor wetting with the matrix and weakening the fiber–matrix interface. Therefore, modification and functionalization strategies for natural fibers to tailor interface properties and to improve the durability and mechanical behavior of cement and geopolymer-based composites become highly important. This paper presents a review of the physical, chemical and biological pre-treatments that have been performed on natural fibers, their results and effects on the fiber–matrix interface of cement and geopolymer composites. In addition, the degradation mechanisms of natural fibers used in such composites are discussed. This review finalizes with concluding remarks and recommendations to be addressed through further in-depth studies in the field.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
B. Doumi ◽  
A. Mokaddem ◽  
N. Benrekaa ◽  
M. Alami ◽  
N. Beldjoudi ◽  
...  

AbstractThe objective of this paper is to study the location of the shear damage to the fiber matrix interface of a hybrid composite material by using the nonlinear acoustic technique, which is commonly described by the addition of a non-linear term in Hooke’s law. The genetic simulation is based on the probabilistic Weibull model including non-linear parameter β. The results obtained show good agreement between the numerical simulation and the actual behavior of two hybrid composite materials: alfa-carbon/Epoxy and glass-carbon/ Epoxy. In addition the results are similar to those obtained by the analytical model, which based on the Cox and Weibull formalism. The extended study for nanocomposite materials is interesting in the future.


2016 ◽  
Vol 51 (17) ◽  
pp. 7929-7943 ◽  
Author(s):  
G. H. D. Tonoli ◽  
V. D. Pizzol ◽  
G. Urrea ◽  
S. F. Santos ◽  
L. M. Mendes ◽  
...  

2001 ◽  
Author(s):  
Victor Birman ◽  
Larry W. Byrd

Abstract The paper elucidates the methods of estimating damping in ceramic matrix composites (CMC) with matrix cracks. Unidirectional composites with bridging matrix cracks and cross-ply laminates with tunneling cracks in transverse layers and bridging cracks in longitudinal layers are considered. It is shown that bridging matrix cracks may dramatically increase damping in unidirectional CMC due to a dissipation of energy along damaged sections of the fiber-matrix interface (interfacial friction). Such friction is absent in the case of tunneling cracks in transverse layers of cross-ply laminates where the changes in damping due to a degradation of the stiffness remain small. However, damping in cross-ply laminates abruptly increases if bridging cracks appear in the longitudinal layers.


Sign in / Sign up

Export Citation Format

Share Document