scholarly journals Comparison of particle removal efficiency between the physical cleaning methods in the fabrication of liquid crystal displays

2010 ◽  
Vol 11 (3) ◽  
pp. 795-801
Author(s):  
Chang-Beom Park ◽  
Seung-Jun Yi ◽  
In-Soung Chang
2019 ◽  
Vol 11 (2) ◽  
pp. 361-367 ◽  
Author(s):  
Tae-Gon Kim ◽  
Shan Hu ◽  
Ahmed A. Busnaina ◽  
Jin-Goo Park

2010 ◽  
Vol 13 (3) ◽  
pp. 67-75
Author(s):  
Thang Xuan Dinh ◽  
Trung Thanh Nguyen

Finding suitable method for selecting the most suitable dust collector for manufacturers is a very important practise which help to reduce environmental pollution and develop a stable society. Based on available research results, the article studies the efficiency of dust removal technique for medium and small scale workshops on three equipments: wet scrubber, wet packed scrubber and centriscrub to suggest suitable dust treatment process in factories as well as the present need. The research result on three equipments suggest that the wet packed scrubber has a minimum particle removal efficiency of 92,67% while the wet scrubber achieving removal efficiency of 81,85% and the Centriscrub achieving removal efficiency up to 99,50%. The results show that the wet cleaning methods is the most suitable method for safe and efficient collection of dusts from various metal working applications such as deburring, polishing and grinding workshop in which the centriscrub achieves the highest efficiency.


2021 ◽  
Vol 314 ◽  
pp. 222-227
Author(s):  
Yukifumi Yoshida ◽  
Katsuya Akiyama ◽  
Song Zhang ◽  
Dai Ueda ◽  
Masaki Inaba ◽  
...  

Wet cleaning has become challenging as the feature size of semiconductor devices decreased to sub-5 nm nodes. One of the key challenges is removing various types and sizes of particles and contamination from complex and fragile 3D structures without pattern damage and film loss. Conventional physical cleaning methods, such as dual-fluid spray or megasonic cleaning, are being used for the particle removal process. However, in advanced device nodes, these methods induce pattern damage and film loss. In this paper, we describe a novel particle removal technology called Nanolift which uses a polymer film consisting of two organic resins with different functions and achieved high particle removal efficiency on various types and sizes of particles with no pattern damage and minimum film loss.


Sign in / Sign up

Export Citation Format

Share Document