STUDY ON EXPERIMENTAL MODEL TO DETERMINE THE EFFICIENCY OF DUST REMOVAL EQUIPMENT FOR MECHANIC WORKSHOP

2010 ◽  
Vol 13 (3) ◽  
pp. 67-75
Author(s):  
Thang Xuan Dinh ◽  
Trung Thanh Nguyen

Finding suitable method for selecting the most suitable dust collector for manufacturers is a very important practise which help to reduce environmental pollution and develop a stable society. Based on available research results, the article studies the efficiency of dust removal technique for medium and small scale workshops on three equipments: wet scrubber, wet packed scrubber and centriscrub to suggest suitable dust treatment process in factories as well as the present need. The research result on three equipments suggest that the wet packed scrubber has a minimum particle removal efficiency of 92,67% while the wet scrubber achieving removal efficiency of 81,85% and the Centriscrub achieving removal efficiency up to 99,50%. The results show that the wet cleaning methods is the most suitable method for safe and efficient collection of dusts from various metal working applications such as deburring, polishing and grinding workshop in which the centriscrub achieves the highest efficiency.

2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2665-2675
Author(s):  
Songsong Zhang ◽  
Qian Du ◽  
Guoli Qi

Particle size distributions, concentrations, morphological characteristics, and elemental compositions of eight fluidized bed boilers with different capacities and different dust collectors were determined experimentally. The PM2.5 particle concentration and mass concentration were monitored in real-time before and after the boiler dust collector by electric low pressure impactor, and the physical and chemical properties of PM2.5 were analyzed by membrane sampling. We found that the PM2.5 particle concentration produced by industrial fluidized bed boilers displayed bimodal distributions, peaking at 0.2 ?m and 0.76 ?m, the formed mechanism of these two parts particles is vaporization-condensation of mineral matter and residual ash particles and the adsorbent wear or tear. Mass concentration exhibits a single peak characteristic with a peak at 0.12 ?m. The removal efficiency for PM2.5 of dust collectors varies with different dust removal mechanisms. The electrostatic precipitator and bag filter have high dust removal efficiency, and the water film dust collector has low dust removal efficiency. The normal operation of the bag filter has a great influence on the dust removal efficiency. The physical and chemical properties of PM2.5 showed that the single-particle morphology was mainly composed of irregular particles, containing a small amount of solid spherical particles and more agglomerates. The content of Si and Al in PM2.5 elemental analysis is the highest, which decreases after a dust collector. Some fluidized bed boilers use desulfurization in the furnace, which has great influence on the mass concentration of Ca and S elements, and the lowest Hg content in trace elements, about a few ppm. <br><br><font color="red"><b> This article has been corrected. Link to the correction <u><a href="http://dx.doi.org/10.2298/TSCI200901242E">10.2298/TSCI200901242E</a><u></b></font>


Author(s):  
Jing Jiang ◽  
Hong-Yue Zhao ◽  
Jin-Cheng Ding ◽  
Hong-Hao Yue ◽  
Xu-Yan Hou

The deposition of lunar dust on the surface of solar panels and optical elements is one of the most important problems need to be solved in lunar exploration. This paper will propose an initiative lunar dust removal system based on the photovoltaic effect of PbLaZrTi (PLZT), which is activated by the ultraviolet light extracted from sun light at the lunar surface. When ultraviolet light with a wavelength near 365nm illuminates on polarized PLZT materials, high voltages of several kilovolt per centimeter can be generated between two electrodes of PLZT. When two electrodes of PLZT are connected to a lunar dust collector (LDC) and the ITO film of protected surface respectively, an electrostatic field forms between LDC and the protected surface. Coulomb forces over particles will overcome gravitational force and surface forces, so the particles can be absorbed to LDC and removed by LDC finally. Based on the equivalent electrical model, mathematical model of electrostatic force is derived when the lunar removal electric field is acted either by single piece PLZT or by multi-pieces PLZT which are connected in parallel. Experimental platform is set up to prove the feasibility of this lunar dust removal system. In order to improve the removal efficiency, a novel configuration design of LDC based on multi-PLZT patched is proposed and its removal efficiency is evaluated by experiments.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Ming Li ◽  
Chao Wu ◽  
Zhi-yong Zhou ◽  
Wei-chun Lian ◽  
Zhi-xiong Chen

A set of dust collectors was designed with corrugated plate for an underground metal mine, which has low ventilation resistance, simple maintenance, and strong environmental adaptability. A three-dimensional simulation model was built based on ANSYS-Fluent software, and it was used to analyze the influence law of key parameters on the comprehensive dust removal efficiency; the angle of corrugated plate to the horizontal plane, the surface characteristics of plate, pressure loss and dust removal efficiency were discussed. The optimal design scheme of the dust collector was determined according to the simulation results. The dust collection was carried out in the Fankou lead-zinc underground metal mine in China, and the total dust removal efficiency was more than 95%, and for respiratory dust, it was more than 85%. This dust collector can be widely used in similar underground metal mines.


Author(s):  
Shengyong Hu ◽  
Yang Gao ◽  
Guorui Feng ◽  
Fei Hu ◽  
Changhe Liu ◽  
...  

AbstractA variety of dust control methods are often applied in coal mines, among which the application of wet scrubbers has proven to be an efficient technology for the removal of dust in airstreams, rather than diluting or confining the dust. In this paper, a wet scrubber design was developed. Based on a self-designed experimental test platform, the total dust concentration, respirable dust concentration, air volume, and average pressure drops of wet scrubbers with 12, 16, 20, and 24 blades were measured under different water intake conditions. The results show that the different water intake levels have only minimal effects on the air volume of the wet scrubbers. However, increased water intake had improved the dust removal efficiency of the wet scrubbers with the same number of blades. The wet scrubber with 16 blades was found to have the best dust removal efficiency at a water intake level of 1.35 m3/h. Its total dust and respirable dust removal efficiency reached 96.81% and 95.59%, respectively. The air volume was 200.4 m3/min, and the average pressure drop was determined to be 169.4 Pa. In addition, when the wet scrubber with 16 blades was applied in a coal preparation plant in China’s Shanxi Province, it was observed that the total dust concentration had fallen below 8.1 mg/m3, and the respirable dust concentration had fallen below 5.9 mg/m3. Therefore, the results obtained in this research investigation provide important references for the use of wet scrubbers to improve coal production environmental conditions.


2019 ◽  
Vol 11 (2) ◽  
pp. 361-367 ◽  
Author(s):  
Tae-Gon Kim ◽  
Shan Hu ◽  
Ahmed A. Busnaina ◽  
Jin-Goo Park

2021 ◽  
Vol 314 ◽  
pp. 222-227
Author(s):  
Yukifumi Yoshida ◽  
Katsuya Akiyama ◽  
Song Zhang ◽  
Dai Ueda ◽  
Masaki Inaba ◽  
...  

Wet cleaning has become challenging as the feature size of semiconductor devices decreased to sub-5 nm nodes. One of the key challenges is removing various types and sizes of particles and contamination from complex and fragile 3D structures without pattern damage and film loss. Conventional physical cleaning methods, such as dual-fluid spray or megasonic cleaning, are being used for the particle removal process. However, in advanced device nodes, these methods induce pattern damage and film loss. In this paper, we describe a novel particle removal technology called Nanolift which uses a polymer film consisting of two organic resins with different functions and achieved high particle removal efficiency on various types and sizes of particles with no pattern damage and minimum film loss.


Sign in / Sign up

Export Citation Format

Share Document