scholarly journals Design and test of in-site radiometric calibration reference light source for spaceborne low light level remote sensors

2020 ◽  
Vol 41 (1) ◽  
pp. 140-144
Author(s):  
GAN Tao ◽  
◽  
◽  
YUAN Yinlin ◽  
ZHAI Wenchao ◽  
...  
2005 ◽  
Vol 62 (4) ◽  
pp. 1032-1052 ◽  
Author(s):  
Ralph Kahn ◽  
Wen-Hao Li ◽  
John V. Martonchik ◽  
Carol J. Bruegge ◽  
David J. Diner ◽  
...  

Abstract Studying aerosols over ocean is one goal of the Multiangle Imaging Spectroradiometer (MISR) and other spaceborne imaging systems. But top-of-atmosphere equivalent reflectance typically falls in the range of 0.03 to 0.12 at midvisible wavelengths and can be below 0.01 in the near-infrared, when an optically thin aerosol layer is viewed over a dark ocean surface. Special attention must be given to radiometric calibration if aerosol optical thickness, and any information about particle microphysical properties, are to be reliably retrieved from such observations. MISR low-light-level vicarious calibration is performed in the vicinity of remote islands hosting Aerosol Robotic Network (AERONET) sun- and sky-scanning radiometers, under low aerosol loading, low wind speed, relatively cloud free conditions. MISR equivalent reflectance is compared with values calculated from a radiative transfer model constrained by coincident, AERONET-retrieved aerosol spectral optical thickness, size distribution, and single scattering albedo, along with in situ wind measurements. Where the nadir view is not in sun glint, MISR equivalent reflectance is also compared with Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance. The authors push the limits of the vicarious calibration method’s accuracy, aiming to assess absolute, camera-to-camera, and band-to-band radiometry. Patterns repeated over many well-constrained cases lend confidence to the results, at a few percent accuracy, as do additional vicarious calibration tests performed with multiplatform observations taken during the Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) campaign. Conclusions are strongest in the red and green bands, but are too uncertain to accept for the near-infrared. MISR nadir-view and MODIS low-light-level absolute reflectances differ by about 4% in the blue and green bands, with MISR reporting higher values. In the red, MISR agrees with MODIS band 14 to better than 2%, whereas MODIS band 1 is significantly lower. Compared to the AERONET-constrained model, the MISR aft-viewing cameras report reflectances too high by several percent in the blue, green, and possibly the red. Better agreement is found in the nadir- and the forward-viewing cameras, especially in the blue and green. When implemented on a trial basis, calibration adjustments indicated by this work remove 40% of a 0.05 bias in retrieved midvisible aerosol optical depth over dark water scenes, produced by the early postlaunch MISR algorithm. A band-to-band correction has already been made to the MISR products, and the remaining calibration adjustments, totaling no more than a few percent, are planned.


2022 ◽  
Vol 2149 (1) ◽  
pp. 012016
Author(s):  
Z F Wu ◽  
L Li ◽  
C H Dai ◽  
Y F Wang ◽  
Q T Cheng ◽  
...  

Abstract Low light level (LLL) calibration becomes more and more important since the rapid growth of remote sensing. The spectral radiance at normal higher light levels can be calibrated with good accuracy, while LLL spectral radiance cannot. If an adjustable light source can be designed at nearly constant correlated color temperature (CCT) covering several orders of magnitude, low light level spectral radiance can be obtained with the help of a photodetector. Whether or not the spectral distribution of an integrating sphere based light source is nearly constant is investigated. By adjusting the diameter of the variable aperture between the integrating sphere and tungsten lamp, the spectral radiance can be varied over 6 orders of magnitude. However, the relative spectrum in the red region increases notably when the spectral radiance is decreased to 1/100000. If the spectral radiance is decreased further, the spectral difference can be more than 300% and CCT decreases more than 250 K. By using baffles and another integrating sphere, low light level radiation source at nearly constant spectral distribution is obtained. The variation of CCT is less than 50 K over 6 orders of magnitude.


2015 ◽  
Vol 30 (6) ◽  
pp. 1763-1780 ◽  
Author(s):  
Jun Jiang ◽  
Wei Yan ◽  
Shuo Ma ◽  
Yangyang Jie ◽  
Xiarong Zhang ◽  
...  

Abstract The day–night band (DNB) low-light-level visible sensor, mounted on the Suomi–National Polar-Orbiting Partnership (SNPP) satellite, can measure visible radiances from the earth and atmosphere (solar/lunar reflection, and natural/anthropogenic nighttime light emissions) during both day and night and can achieve unprecedented nighttime low-light-level imaging with its accurate radiometric calibration and fine spatiotemporal resolution. Based on the good characteristics of DNB, a multichannel threshold (MCT) algorithm combining DNB with other Visible–Infrared Imager–Radiometer Suite (VIIRS) channels is proposed to monitor nighttime fog/low stratus. Through a gradual separation of the underlying surface (land, vegetation, water bodies, and city lights), snow, and high/medium clouds, a fog/low-stratus region can ultimately be extracted by the algorithm. Then, the algorithmic feasibility is verified by three typical cases of heavy fog/low stratus in China. The experimental results demonstrate that the outcomes of the MCT algorithm approximately coincide with the ground-measured results. Furthermore, the MCT algorithm shows promise for nighttime fog/low-stratus detection in some example cases with about a 0.84 average probability of detection (POD), a 0.73 average critical success index (CSI), and a 0.15 average false alarm ratio (FAR), which reveals some improvement over the conventional dual-channel difference (DCD) algorithm.


Author(s):  
G.Y. Fan ◽  
J.M. Cowley

In recent developments, the ASU HB5 has been modified so that the timing, positioning, and scanning of the finely focused electron probe can be entirely controlled by a host computer. This made the asynchronized handshake possible between the HB5 STEM and the image processing system which consists of host computer (PDP 11/34), DeAnza image processor (IP 5000) which is interfaced with a low-light level TV camera, array processor (AP 400) and various peripheral devices. This greatly facilitates the pattern recognition technique initiated by Monosmith and Cowley. Software called NANHB5 is under development which, instead of employing a set of photo-diodes to detect strong spots on a TV screen, uses various software techniques including on-line fast Fourier transform (FFT) to recognize patterns of greater complexity, taking advantage of the sophistication of our image processing system and the flexibility of computer software.


Author(s):  
W. Lin ◽  
J. Gregorio ◽  
T.J. Holmes ◽  
D. H. Szarowski ◽  
J.N. Turner

A low-light level video microscope with long working distance objective lenses has been built as part of our integrated three-dimensional (3-D) light microscopy workstation (Fig. 1). It allows the observation of living specimens under sufficiently low light illumination that no significant photobleaching or alternation of specimen physiology is produced. The improved image quality, depth discrimination and 3-D reconstruction provides a versatile intermediate resolution system that replaces the commonly used dissection microscope for initial image recording and positioning of microelectrodes for neurobiology. A 3-D image is displayed on-line to guide the execution of complex experiments. An image composed of 40 optical sections requires 7 minutes to process and display a stereo pair.The low-light level video microscope utilizes long working distance objective lenses from Mitutoyo (10X, 0.28NA, 37 mm working distance; 20X, 0.42NA, 20 mm working distance; 50X, 0.42NA, 20 mm working distance). They provide enough working distance to allow the placement of microelectrodes in the specimen.


1998 ◽  
Author(s):  
Lianfa Bai ◽  
Qian Chen ◽  
Dekui Yin ◽  
Baomin Zhang

2016 ◽  
Author(s):  
Chao Liu ◽  
Xiao-hui Zhang ◽  
Qing-ping Hu ◽  
Yong-kang Chen

Sign in / Sign up

Export Citation Format

Share Document