Performance of a thinned back-illuminated CCD coupled to a confocal microscope for low-light-level fluorescence imaging

Author(s):  
Barry R. Masters
1988 ◽  
Vol 255 (4) ◽  
pp. C566-C571 ◽  
Author(s):  
J. K. Foskett

A video microscope designed to allow low light level fluorescence imaging of cells during simultaneous high-resolution differential interference contrast (DIC) imaging, without the fluorescence light losses of 60-90% normally associated with this contrast-enhancement technique, is described. Transmitted light for DIC imaging, filtered at greater than 620 nm, passes through standard DIC optical components, (1/4 lambda-plate, polarizer, and Wollaston prism) before illuminating the cells. Transmitted light and fluorescence emission pass through a second Wollaston prism but not through the analyzer, which is repositioned more distally in the optical path. Prisms designed to reflect light out a side port of the microscope to a video camera have been replaced with a dichroic mirror. This mirror reflects fluorescence emission out the side port to a low light-sensitive video camera. The spectrally distinct transmitted light continues through the dichroic mirror to an overhead camera through a polarizer (analyzer), which completes the DIC optical path. The fluorescence and DIC images can be viewed simultaneously on side-by-side video monitors, examined sequentially by an image-processing computer, or examined simultaneously using a video splitter/inserter. The ability to image cells with high resolution simultaneously with low light level fluorescence imaging should find wide applicability whenever it is necessary or desirable to correlate fluorescence intensity or distribution with specific cell structure or function.


1995 ◽  
Author(s):  
George M. Williams, Jr. ◽  
Alice L. Reinheimer ◽  
C. Bruce Johnson ◽  
K. D. Wheeler ◽  
Norm D. Wodecki ◽  
...  

1995 ◽  
Author(s):  
George M. Williams, Jr. ◽  
Alice L. Rheinheimer ◽  
Verle W. Aebi ◽  
Kenneth A. Costello

Author(s):  
G.Y. Fan ◽  
J.M. Cowley

In recent developments, the ASU HB5 has been modified so that the timing, positioning, and scanning of the finely focused electron probe can be entirely controlled by a host computer. This made the asynchronized handshake possible between the HB5 STEM and the image processing system which consists of host computer (PDP 11/34), DeAnza image processor (IP 5000) which is interfaced with a low-light level TV camera, array processor (AP 400) and various peripheral devices. This greatly facilitates the pattern recognition technique initiated by Monosmith and Cowley. Software called NANHB5 is under development which, instead of employing a set of photo-diodes to detect strong spots on a TV screen, uses various software techniques including on-line fast Fourier transform (FFT) to recognize patterns of greater complexity, taking advantage of the sophistication of our image processing system and the flexibility of computer software.


Author(s):  
W. Lin ◽  
J. Gregorio ◽  
T.J. Holmes ◽  
D. H. Szarowski ◽  
J.N. Turner

A low-light level video microscope with long working distance objective lenses has been built as part of our integrated three-dimensional (3-D) light microscopy workstation (Fig. 1). It allows the observation of living specimens under sufficiently low light illumination that no significant photobleaching or alternation of specimen physiology is produced. The improved image quality, depth discrimination and 3-D reconstruction provides a versatile intermediate resolution system that replaces the commonly used dissection microscope for initial image recording and positioning of microelectrodes for neurobiology. A 3-D image is displayed on-line to guide the execution of complex experiments. An image composed of 40 optical sections requires 7 minutes to process and display a stereo pair.The low-light level video microscope utilizes long working distance objective lenses from Mitutoyo (10X, 0.28NA, 37 mm working distance; 20X, 0.42NA, 20 mm working distance; 50X, 0.42NA, 20 mm working distance). They provide enough working distance to allow the placement of microelectrodes in the specimen.


Author(s):  
C J R Sheppard

The confocal microscope is now widely used in both biomedical and industrial applications for imaging, in three dimensions, objects with appreciable depth. There are now a range of different microscopes on the market, which have adopted a variety of different designs. The aim of this paper is to explore the effects on imaging performance of design parameters including the method of scanning, the type of detector, and the size and shape of the confocal aperture.It is becoming apparent that there is no such thing as an ideal confocal microscope: all systems have limitations and the best compromise depends on what the microscope is used for and how it is used. The most important compromise at present is between image quality and speed of scanning, which is particularly apparent when imaging with very weak signals. If great speed is not of importance, then the fundamental limitation for fluorescence imaging is the detection of sufficient numbers of photons before the fluorochrome bleaches.


2021 ◽  
Vol 11 (6) ◽  
pp. 2773
Author(s):  
Hiroaki Yokota ◽  
Atsuhito Fukasawa ◽  
Minako Hirano ◽  
Toru Ide

Over the years, fluorescence microscopy has evolved and has become a necessary element of life science studies. Microscopy has elucidated biological processes in live cells and organisms, and also enabled tracking of biomolecules in real time. Development of highly sensitive photodetectors and light sources, in addition to the evolution of various illumination methods and fluorophores, has helped microscopy acquire single-molecule fluorescence sensitivity, enabling single-molecule fluorescence imaging and detection. Low-light photodetectors used in microscopy are classified into two categories: point photodetectors and wide-field photodetectors. Although point photodetectors, notably photomultiplier tubes (PMTs), have been commonly used in laser scanning microscopy (LSM) with a confocal illumination setup, wide-field photodetectors, such as electron-multiplying charge-coupled devices (EMCCDs) and scientific complementary metal-oxide-semiconductor (sCMOS) cameras have been used in fluorescence imaging. This review focuses on the former low-light point photodetectors and presents their fluorescence microscopy applications and recent progress. These photodetectors include conventional PMTs, single photon avalanche diodes (SPADs), hybrid photodetectors (HPDs), in addition to newly emerging photodetectors, such as silicon photomultipliers (SiPMs) (also known as multi-pixel photon counters (MPPCs)) and superconducting nanowire single photon detectors (SSPDs). In particular, this review shows distinctive features of HPD and application of HPD to wide-field single-molecule fluorescence detection.


2003 ◽  
Author(s):  
Colin G. Coates ◽  
Donal J. Denvir ◽  
Noel G. McHale ◽  
Keith D. Thornbury ◽  
Mark A. Hollywood

Sign in / Sign up

Export Citation Format

Share Document