scholarly journals Hydrogenation of Graphene and Hydrogen Diffusion Behavior on Graphene/Graphane Interface

10.5772/20676 ◽  
2011 ◽  
Author(s):  
Zhimin Ao ◽  
Sean Li
1992 ◽  
Vol 1 (1) ◽  
pp. 725-730
Author(s):  
R. C. Bowman ◽  
D. R. Torgeson ◽  
A. J. Maeland

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiang Qiu ◽  
Kun Zhang ◽  
Qin Kang ◽  
Yicheng Fan ◽  
Hongyu San ◽  
...  

Purpose This paper aims to study the mechanism of hydrogen embrittlement in 12Cr2Mo1R(H) steel, which will help to provide valuable information for the subsequent hydrogen embrittlement research of this kind of steel, so as to optimize the processing technology and take more appropriate measures to prevent hydrogen damage. Design/methodology/approach The hydrogen diffusion coefficient of 12Cr2Mo1R(H) steel was measured by the hydrogen permeation technique of double electrolytic cells. Moreover, the influence of hydrogen traps in the material and experimental temperature on hydrogen diffusion behavior was discussed. The first-principles calculations based on density functional theory were used to study the occupancy of H atoms in the bcc-Fe cell, the diffusion path and the interaction with vacancy defects. Findings The results revealed that the logarithm of the hydrogen diffusion coefficient of the material has a linear relationship with the reciprocal of temperature and the activation energy of hydrogen atom diffusion in 12Cr2Mo1R(H) steel is 23.47 kJ/mol. H atoms stably exist in the nearly octahedral interstices in the crystal cell with vacancies. In addition, the solution of Cr/Mo alloy atom does not change the lowest energy path of H atom, but increases the diffusion activation energy of hydrogen atom, thus hindering the diffusion of hydrogen atom. Cr/Mo and vacancy have a synergistic effect on inhibiting the diffusion of H atoms in α-Fe. Originality/value This article combines experiments with first-principles calculations to explore the diffusion behavior of hydrogen in 12Cr2Mo1R(H) steel from the macroscopic and microscopic perspectives, which will help to establish a calculation model with complex defects in the future.


2020 ◽  
Vol 105 (4) ◽  
pp. 468-478 ◽  
Author(s):  
Charles A. Geiger ◽  
George R. Rossman

Abstract The nominally anhydrous, calcium-silicate garnets, grossular (Ca3Al2Si3O12), andradite (Ca3Fe23+Si3O12), schorlomite (Ca3Ti24+[Si,Fe23+]O12), and their solid solutions can incorporate structural OH-, often termed “water.” The IR single-crystal spectra of several calcium silicate garnets were recorded between 3000 and 4000 cm–1. Spectroscopic results are also taken from the literature. All spectra show various OH- stretching modes between 3500 and 3700 cm–1 and they are analyzed. Following the conclusions of Part I of this study, the garnets appear to contain local microscopic- and nano-size Ca3Al2H12O12- and Ca3Fe23+H12O12-like domains and/or clusters dispersed throughout an anhydrous “matrix.” The substitution mechanism is the hydrogarnet one, where (H4O4)4– ↔ (SiO4)4–, and various local configurations containing different numbers of (H4O4)4– groups define the cluster type. A single (H4O4) group is roughly 3 Å across and most (H4O4)-clusters are between this and 15 Å in size. This model can explain the IR spectra and also other experimental results. Various hypothetical “defect” and cation substitutional mechanisms are not needed to account for OH- incorporation and behavior in garnet. New understanding at the atomic level into published dehydration and H-species diffusion results, as well as H2O-concentration and IR absorption-coefficient determinations, is now possible for the first time. End-member synthetic and natural grossular crystals can show similar OH- “band patterns,” as can different natural garnets, indicating that chemical equilibrium could have operated during their crystallization. Under this assumption, the hydrogarnet-cluster types and their concentrations can potentially be used to decipher petrologic (i.e., P-T-X) conditions under which a garnet crystal, and the rock in which it occurs, formed. Schorlomites from phonolites contain no or very minor amounts of H2O (0.0 to 0.02 wt%), whereas Ti-bearing andradites from chlorite schists can contain more H2O (∼0.3 wt%). Different hydrogarnet clusters and concentrations can occur in metamorphic grossulars from Asbestos, Quebec, Canada. IR absorption coefficients for H2O held in hydrogrossularand hydroandradite-like clusters should be different in magnitude and this work lays out how they can be best determined. Hydrogen diffusion behavior in garnet crystals at high temperatures is primarily governed by the thermal stability of the different local hydrogarnet clusters at 1 atm.


1993 ◽  
Vol 181 (Part_1_2) ◽  
pp. 181-186 ◽  
Author(s):  
R. C. Bowman ◽  
D. R. Torgeson ◽  
A. J. Maeland

2018 ◽  
Vol 941 ◽  
pp. 153-157
Author(s):  
Yuya Sato ◽  
Yoshiaki Murakami ◽  
Igi Satoshi ◽  
Nobuyuki Ishikawa

In this study, the occurrence of cold cracking in high strength steel welds were investigated in terms of residual stress and hydrogen diffusion behavior. The y-groove weld cracking test of TS780MPa grade steel plate was conducted with intentionally introducing hydrogen into the shielding gas during the gas-metal arc welding (GMAW). Since local stress is one of the most important factors for the cold cracking, residual stress distribution in the weld joint was measured by the neutron diffraction using TAKUMI in J-PARC. The root region, which is usually the crack initiation site in the y-groove cold cracking test, was under a multi-axial stress state and showed highest tensile residual stress in the transverse direction. It was considered that hydrogen diffusion and accumulation could be enhanced in the high stressed root region, resulting in cold cracking. Therefore, hydrogen diffusion behavior and stress distribution in the y-groove weld joint was investigated by a coupled thermo elastic plastic and hydrogen diffusion analyses. Hydrogen accumulation occurred in the root region where showed highest hydrostatic stress. The point where showed the hydrogen accumulation was well corresponded to the crack initiation site. It was indicated that local hydrogen concentration after welding was another important key factor for the cold cracking. From these investigations, it was essential to take the combination of local hydrogen concentration and residual stress distribution near the root region into account for the highly precise estimation of cold cracking.


Sign in / Sign up

Export Citation Format

Share Document