scholarly journals Pumice for Efficient Water Use in Greenhouse Tomato Production

Author(s):  
Miguel Angel ◽  
Luime Martnez-Corral ◽  
Pablo Yescas-Coronado ◽  
Jorge A. ◽  
Enrique Martnez-Rubn de Celis
HortScience ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 484-493 ◽  
Author(s):  
Uttam K. Saha ◽  
Athanasios P. Papadopoulos ◽  
Xiuming Hao ◽  
Shalin Khosla

To address the concern that irrigation provides sufficient water to match the crop needs, while not impeding oxygen availability to the roots, we conducted an experiment to develop suitable irrigation schedule(s) for greenhouse tomato (Lycopersicon esculentum Mill.) on rockwool. The experimental treatments incorporated the electrical conductivity (EC) of the nutrient solution in the rockwool slab (slab-EC) along with the water content (WC) in the rockwool slab (slab-WC) as the irrigation decision-making variables. They were: slab-WC ≤ 70% or slab-EC ≥ 1.4× normal or more (T1), slab-WC ≤ 70% or slab-EC ≥ 1.7× normal or more (T2), slab-WC ≤ 80% or slab-EC ≥ 1.4× normal or more (T3), slab-WC ≤ 80% or slab-EC ≥ 1.7× normal or more (T4), and the combined weight loss (WL) 700 g or more (T5) and WL 500 g or more (T6), in which “normal” means the feed solution EC as recommended in the seasonal fertigation schedule for a spring–summer tomato crop. The data on early-season marketable yield, total seasonal marketable yield, and fruit grades indicated the superiority of treatments T1, T2, and T6 over T3, T4, and T5. Better root growth was observed with T1, T2, and T6 and this was also associated with minimized nutrient solution leaching; furthermore, these plants had an abundance of coarse and fine roots, higher photosynthesis and transpiration, higher marketable yield, and a higher water use efficiency. Our results thus established that irrigation based on either a slab water content 70% or less or a 500-g weight loss is the best strategy for rockwool-grown greenhouse tomatoes in the spring–summer season. A variation in slab-EC between 1.4 and 1.7× normal, at a slab-WC of 70% or less, would have no significant effect on root growth, water use, marketable yield, or fruit grades.


2005 ◽  
Vol 5 (3-4) ◽  
pp. 295-301
Author(s):  
J.S. Buckle

This article describes a successful awareness and education project undertaken in an East Rand township by the Water Cycle Management Section of Rand Water. The Project's focus was to create awareness in the community of the broad concept of water cycle management within an environment and to transfer skills to community members (facilitators) who could then assist in ensuring effective and efficient water use.


2002 ◽  
Vol 82 (4) ◽  
pp. 771-780 ◽  
Author(s):  
X. Hao ◽  
A. P. Papadopoulos

Two full spring season tomato crops (Lycopersicon esculentum Mill. “Trust”) were grown in an open rockwool system with standard rockwool feeding formulae (O-R; conventional method), and in closed rockwool systems with standard rockwool (C-R) or Nutrient Film Technique (C-NFT) feeding formulae (modified in 1997) in 1996 and 1997 to examine the feasibility of a fully closed rockwool production system with appropriate feeding formulae. The closed rockwool system with optimized feeding formulae achieved high marketable yield, similar to that of the open rockwool system. There were no differences in early plant growth, plant biomass or biomass partitioning, and in total fruit yield, size and grades except for the closed rockwool system with the standard rockwool feeding formulae (C-R), which had lower yield than C-NFT in the last month of harvest in 1996. The photosynthesis of old foliage was higher and the root systems at the end of the experiments were rated healthier in plants grown in the closed (C-R and C-NFT) systems than in plants grown in the open (O-R) system. Over 30% of water and fertilizer was saved with the closed systems in comparison to the conventional open system. These results demonstrated that closed rockwool systems with optimized nutrient feedings are economically and environmentally sound alternative methods for greenhouse tomato production in Ontario. Key words: Lycopersicon esculentum, tomato, yield, recycling, rockwool, greenhouse


2005 ◽  
Vol 97 (2) ◽  
pp. 364-372 ◽  
Author(s):  
David C. Nielsen ◽  
Paul W. Unger ◽  
Perry R. Miller

2008 ◽  
pp. 521-528 ◽  
Author(s):  
A.P. Papadopoulos ◽  
U. Saha ◽  
X. Hao ◽  
S. Khosla

2011 ◽  
Vol 12 (1) ◽  
pp. 19 ◽  
Author(s):  
W. M. Wintermantel

Potyviruses, transmitted by a diverse array of common aphid species, infect a broad range of vegetable crops, and can be problematic in greenhouse tomato production. Once introduced, these viruses are believed to be transmitted plant-to-plant during pruning operations, and can infect large sections of a greenhouse, resulting in significant losses in fruit quality and yield. Several methods are used for virus management in greenhouse production, including rouging of diseased plants and treatment of tools and facilities with virucides to eradicate the virus responsible. To clarify potyvirus transmission efficiency from an infected source during pruning operations, experiments were conducted using direct and serial mechanical inoculation of Potato virus Y (PVY) using a scalpel dipped in a suspension of PVY-infected plant sap. Tests demonstrated that both serial and direct inoculation resulted in significant PVY transmission, but that transmission rates declined after the first few plants in serial transmission. Additional tests evaluated the efficiency of two virucides, a quaternary ammonium solution and sodium hypochlorite, for virus inactivation during pruning operations using a range of concentrations and time points. Results demonstrated that 0.5% sodium hypochlorite treatment for two seconds was sufficient for virus control, and superior to treatment with quaternary ammonium solutions. Accepted for publication 20 December 2010. Published 21 February 2011.


Sign in / Sign up

Export Citation Format

Share Document