scholarly journals Growth, Water Use, and Nitrate-15N Uptake of Greenhouse Tomato as Influenced by Different Irrigation Patterns, 15N Labeled Depths, and Transplant Times

2017 ◽  
Vol 8 ◽  
Author(s):  
Maomao Hou ◽  
Qiu Jin ◽  
Xinyu Lu ◽  
Jiyu Li ◽  
Huizhen Zhong ◽  
...  
2013 ◽  
Vol 39 (9) ◽  
pp. 1687 ◽  
Author(s):  
Zi-Jin NIE ◽  
Yuan-Quan CHEN ◽  
Jian-Sheng ZHANG ◽  
Jiang-Tao SHI ◽  
Chao LI ◽  
...  

2015 ◽  
Vol 4 ◽  
pp. 440-444 ◽  
Author(s):  
Donato Buttaro ◽  
Pietro Santamaria ◽  
Angelo Signore ◽  
Vito Cantore ◽  
Francesca Boari ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Mingzhi Zhang ◽  
Zhenguang Lu ◽  
Qingjun Bai ◽  
Yushun Zhang ◽  
Xinqiang Qiu ◽  
...  

The aim of this study is to exam the effect of microsprinkler irrigation technology under plastic film (MSPF) and to evaluate the reasonable micropore group spacing and capillary arrangement density in the greenhouse. Compared with drip irrigation under plastic film (DIPF) and microsprinkling irrigation (MSI) conditions, the effects of different micropore group spacing (L1: 30 cm micropore group spacing, L2: 50 cm micropore group spacing) and capillary arrangement density (C1: one pipe for one row, C2: one pipe for two rows, and C3: one pipe for three rows) with the MSPF on photosynthetic characteristics and fruit yield of tomatoes were studied using completely randomized trial design. The results showed that under the same irrigation amount, compared with DIPF and MSI, the photosynthetic rate of tomatoes treated with L1C2 increased by 8.24% and 13.55%, respectively. The total dry matter accumulation, yield, and water use efficiency at condition of L1C2 increased by 12.16%, 19.39%, and 10.03% compared with DIPF and 26.38%, 20.46%, and 31.02% compared with MSI, respectively. The results provide evidence that the MSPF can be applied to greenhouse tomatoes. The photosynthetic rate, total dry matter accumulation, yield, and water use efficiency of tomato leaves cultivated at a micropore group spacing of 30 cm were 1.07, 1.13, 1.14, and 1.13 times higher than those of 50 cm, respectively. With the decrease in capillary arrangement density, the photosynthetic characteristics of the tomato leaves, the total dry matter accumulation, and yield of tomatoes all experienced a decline. It is recommended to use a combination of one pipe for two rows of capillaries at a 30 cm micropore group spacing as the technical parameter of greenhouse tomato with MSPF in arid and semiarid sandy loam soils.


2019 ◽  
Vol 226 ◽  
pp. 105787 ◽  
Author(s):  
Hao Liu ◽  
Huanhuan Li ◽  
Huifeng Ning ◽  
Xiaoxian Zhang ◽  
Shuang Li ◽  
...  

HortScience ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 484-493 ◽  
Author(s):  
Uttam K. Saha ◽  
Athanasios P. Papadopoulos ◽  
Xiuming Hao ◽  
Shalin Khosla

To address the concern that irrigation provides sufficient water to match the crop needs, while not impeding oxygen availability to the roots, we conducted an experiment to develop suitable irrigation schedule(s) for greenhouse tomato (Lycopersicon esculentum Mill.) on rockwool. The experimental treatments incorporated the electrical conductivity (EC) of the nutrient solution in the rockwool slab (slab-EC) along with the water content (WC) in the rockwool slab (slab-WC) as the irrigation decision-making variables. They were: slab-WC ≤ 70% or slab-EC ≥ 1.4× normal or more (T1), slab-WC ≤ 70% or slab-EC ≥ 1.7× normal or more (T2), slab-WC ≤ 80% or slab-EC ≥ 1.4× normal or more (T3), slab-WC ≤ 80% or slab-EC ≥ 1.7× normal or more (T4), and the combined weight loss (WL) 700 g or more (T5) and WL 500 g or more (T6), in which “normal” means the feed solution EC as recommended in the seasonal fertigation schedule for a spring–summer tomato crop. The data on early-season marketable yield, total seasonal marketable yield, and fruit grades indicated the superiority of treatments T1, T2, and T6 over T3, T4, and T5. Better root growth was observed with T1, T2, and T6 and this was also associated with minimized nutrient solution leaching; furthermore, these plants had an abundance of coarse and fine roots, higher photosynthesis and transpiration, higher marketable yield, and a higher water use efficiency. Our results thus established that irrigation based on either a slab water content 70% or less or a 500-g weight loss is the best strategy for rockwool-grown greenhouse tomatoes in the spring–summer season. A variation in slab-EC between 1.4 and 1.7× normal, at a slab-WC of 70% or less, would have no significant effect on root growth, water use, marketable yield, or fruit grades.


Author(s):  
Miguel Angel ◽  
Luime Martnez-Corral ◽  
Pablo Yescas-Coronado ◽  
Jorge A. ◽  
Enrique Martnez-Rubn de Celis

Sign in / Sign up

Export Citation Format

Share Document