scholarly journals Fourier Transform Application in the Computation of Lightning Electromagnetic Field

10.5772/34463 ◽  
2012 ◽  
Author(s):  
Vesna Javor
1973 ◽  
Vol 28 (6) ◽  
pp. 907-910
Author(s):  
S. Datta Majumdar ◽  
G. P. Sastry

The electromagnetic field of a point charge moving uniformly in a uniaxial dispersive medium is studied in the rest frame of the charge. It is shown that the Fourier integral for the scalar potential breaks up into three integrals, two of which are formally identical to the isotropic integral and yield the ordinary and extraordinary cones. Using the convolution theorem of the Fourier transform, the third integral is reduced to an integral over the isotropic field. Dispersion is explicitly introduced into the problem and the isotropic field is evaluated on the basis of a simplified dispersion formula. The effect of dispersion on the field cone is studied as a function of the cut-off frequency.


2018 ◽  
pp. 92-97
Author(s):  
Валерий Константинович Волосюк ◽  
Семён Сергеевич Жила ◽  
Эдуард Алексеевич Цернэ ◽  
Александр Иванович Стороженко

The structure of the electromagnetic field in the domain of its registration is considered in the case of the solution of problems of remote sensing of the underlying surfaces on the basis of the phenomenological approach. This approach is mainly based on the theory of ray optics and the Huygens-Fresnel principle. It allows to determine the radiated and scattered fields for complex types of surfaces. Analysis of the structure of the electromagnetic field shows that it can be regarded as a mathematical transformation over the true image of the surface. In this case, the basic procedures for the coherent imaging in the far-field Fraunhofer region by multichannel radio-engineering systems should be based on the inverse transformation. For incomplete restoration of the desired image, without the phase and attenuation due to propagation, the basic operation is the inverse Fourier transform on the angular coordinates. The quality of the imaging in the Fraunhofer zone is determined by the ambiguity function. In a simple case of a rectangular receiving domain, ambiguity function has the form of two sinc functions which width is proportional to wavelength, to height of sounding and the linear sizes of receiving domain. If the distance to each point of the surface is known, then it is possible to completely reconstruct the coherent image. In this case, it is necessary to apply sliding short-scale Fourier transform to the received electromagnetic field. Obtained results correspond to the classical theory of resonance scattering. While ambiguity function is constant in the infinite limits of integration for a specific fixed value of the direction, only one spectral component (spatial harmonic) can be extracted from the desired image.  it Is possible to allocate an ever wider range of spatial frequencies with the narrowing of the ambiguity function. In the limit, when the ambiguity function is a delta function, the full spectrum of frequencies of the desired image can be extracted, i.e. this function can be completely restored. If it is not possible to create a system with narrow ambiguity function then the higher-quality coherent image can be obtained by the same receiving domain by scanning or movement in space


Author(s):  
Sharmili Das ◽  
Rohit Siddharth Dhabarde ◽  
V. R. K. Raju

Purpose The purpose of this study is to develop a novel rectangular linear induction motor as an electromagnetic stirrer (EMS) using analytical followed by a numerical approach. The rectangular linear electromagnetic stirrer (RLEMS) is mainly developed for rectangular slab and billet as the end product. Design/methodology/approach A two-dimensional analytical approach for evaluating flux density distribution within the mold is established for RLEMS structure. Subsequently, the average stirring force within the mold is estimated from those field variables. The paper presents an analytical and numerical model for calculating the stirring force and counters the end and edge effects of linear-type EMS. Magnetic field and force profile within the mold due to polyphase rectangular stator distribution has been done with the help of Maxwell’s equation with appropriate boundary conditions by using Fourier transform and inverse Fourier transform. Subsequently, a numerical study has been carried out using a coupled thermal and electromagnetic model. Findings The present study investigates the physical phenomena during the solidification process because of an induced electromagnetic field and is able to extract all the electromagnetic field variables under different operating conditions, and, subsequently, provides an insight into the actual happening within the mold. Originality/value It provides the analytical method for solving the stirring force of the proposed new RLEMS structure by addressing the smooth and efficient variation of field and velocity profile near the corner of the mold and improves the quality of end product.


1998 ◽  
Author(s):  
B.J. Cooke ◽  
B.E. Laubscher ◽  
N.L. Olivas ◽  
R.M. Goeller ◽  
M. Cafferty ◽  
...  

Author(s):  
L. Reimer ◽  
R. Oelgeklaus

Quantitative electron energy-loss spectroscopy (EELS) needs a correction for the limited collection aperture α and a deconvolution of recorded spectra for eliminating the influence of multiple inelastic scattering. Reversely, it is of interest to calculate the influence of multiple scattering on EELS. The distribution f(w,θ,z) of scattered electrons as a function of energy loss w, scattering angle θ and reduced specimen thickness z=t/Λ (Λ=total mean-free-path) can either be recorded by angular-resolved EELS or calculated by a convolution of a normalized single-scattering function ϕ(w,θ). For rotational symmetry in angle (amorphous or polycrystalline specimens) this can be realised by the following sequence of operations :(1)where the two-dimensional distribution in angle is reduced to a one-dimensional function by a projection P, T is a two-dimensional Fourier transform in angle θ and energy loss w and the exponent -1 indicates a deprojection and inverse Fourier transform, respectively.


Author(s):  
John A. Reffner ◽  
William T. Wihlborg

The IRμs™ is the first fully integrated system for Fourier transform infrared (FT-IR) microscopy. FT-IR microscopy combines light microscopy for morphological examination with infrared spectroscopy for chemical identification of microscopic samples or domains. Because the IRμs system is a new tool for molecular microanalysis, its optical, mechanical and system design are described to illustrate the state of development of molecular microanalysis. Applications of infrared microspectroscopy are reviewed by Messerschmidt and Harthcock.Infrared spectral analysis of microscopic samples is not a new idea, it dates back to 1949, with the first commercial instrument being offered by Perkin-Elmer Co. Inc. in 1953. These early efforts showed promise but failed the test of practically. It was not until the advances in computer science were applied did infrared microspectroscopy emerge as a useful technique. Microscopes designed as accessories for Fourier transform infrared spectrometers have been commercially available since 1983. These accessory microscopes provide the best means for analytical spectroscopists to analyze microscopic samples, while not interfering with the FT-IR spectrometer’s normal functions.


Author(s):  
E. Voelkl ◽  
L. F. Allard

The conventional discrete Fourier transform can be extended to a discrete Extended Fourier transform (EFT). The EFT allows to work with discrete data in close analogy to the optical bench, where continuous data are processed. The EFT includes a capability to increase or decrease the resolution in Fourier space (thus the argument that CCD cameras with a higher number of pixels to increase the resolution in Fourier space is no longer valid). Fourier transforms may also be shifted with arbitrary increments, which is important in electron holography. Still, the analogy between the optical bench and discrete optics on a computer is limited by the Nyquist limit. In this abstract we discuss the capability with the EFT to change the initial sampling rate si of a recorded or simulated image to any other(final) sampling rate sf.


Sign in / Sign up

Export Citation Format

Share Document