scholarly journals A Probabilistic Approach to Fatigue Design of Aerospace Components by Using the Risk Assessment Evaluation

Author(s):  
Giorgio Cavallini ◽  
Roberta Lazzeri
2006 ◽  
Vol 164 ◽  
pp. S139-S140 ◽  
Author(s):  
Øyvind Albert Voie ◽  
Kjetil S. Longva ◽  
Arnljot E. Strømseng ◽  
Arnt Johnsen

2021 ◽  
Author(s):  
Sophie Mentzel ◽  
Merete Grung ◽  
Knut Erik Tollefsen ◽  
Marianne Stenrod ◽  
Karina Petersen ◽  
...  

Conventional environmental risk assessment of chemicals is based on a calculated risk quotient, representing the ratio of exposure to effects of the chemical, in combination with assessment factors to account for uncertainty. Probabilistic risk assessment approaches can offer more transparency, by using probability distributions for exposure and/or effects to account for variability and uncertainty. In this study, a probabilistic approach using Bayesian network (BN) modelling is explored as an alternative to traditional risk calculation. BNs can serve as meta-models that link information from several sources and offer a transparent way of incorporating the required characterization of uncertainty for environmental risk assessment. To this end, a BN has been developed and parameterised for the pesticides azoxystrobin, metribuzin, and imidacloprid. We illustrate the development from deterministic (traditional) risk calculation, via intermediate versions, to fully probabilistic risk characterisation using azoxystrobin as an example. We also demonstrate seasonal risk calculation for the three pesticides.


2019 ◽  
Author(s):  
Gabriela Aznar-Siguan ◽  
David N. Bresch

Abstract. The need for assessing the risk of extreme weather events is ever increasing. In addition to quantification of risk today, the role of aggravating factors such as high population growth and changing climate conditions do matter, too. We present the open source software CLIMADA, which integrates hazard, exposure and vulnerability to compute the necessary metrics to assess risk and to quantify socio-economic impact. The software design is modular and object-oriented, offering a simple collaborative framework and a parallelization strategy which allows for scalable computations on clusters. CLIMADA supports multi-hazard calculations and provides an event-based probabilistic approach that is globally consistent for a wide range of resolutions, suitable for whole-country to detailed local studies. This paper uses the platform to estimate and contextualize the damage of hurricane Irma in the Caribbean in 2017. Most of the affected islands are non-sovereign countries and do also rely on overseas support in case disaster strikes. The risk assessment performed for this region, based on remotely available data available shortly before or hours after landfall of Irma, proves to be close to reported damage and hence demonstrates a method to provide readily available impact estimates and associated uncertainties in real time.


2008 ◽  
Vol 45 (9) ◽  
pp. 1250-1267 ◽  
Author(s):  
Mark J. Cassidy ◽  
Marco Uzielli ◽  
Suzanne Lacasse

Probabilistic risk assessments are increasingly being considered the most appropriate framework for engineers to systematically base decisions on hazard mitigation issues. This paper aims to show the advantages of a quantitative risk assessment by application to a historical case study. The generalized integrated risk assessment framework has been applied retrospectively to a submarine landslide that occurred in 1996 near the village of Finneidfjord in northern Norway. Over 1 million cubic metres of predominantly quick clay was displaced. Even though it was triggered underwater on the embankment of the Sørfjord, the retrogressive nature of the slide resulted in it encroaching 100–150 m inland. The triggering mechanism is believed to have been the placement of fill, from a nearby tunnelling project, on the foreshore of the embankment. This paper is a retrospective quantitative evaluation of the risk to the neighbouring houses, the persons in those houses, and the persons in open spaces caused by the placement of increasing levels of embankment fill. A probabilistic approach, making use of second-moment modelling and first-order second-moment approximation is adopted. It aims to demonstrate the advantages of this type of risk assessment in understanding complex and integrated hazards, particularly those in populated environments.


2014 ◽  
Vol 37 (10) ◽  
pp. 1136-1145 ◽  
Author(s):  
C. Roux ◽  
X. Lorang ◽  
H. Maitournam ◽  
M. L. Nguyen-Tajan

2003 ◽  
Vol 51 (6) ◽  
pp. 689 ◽  
Author(s):  
Barry T. Hart ◽  
P. S. Lake ◽  
J. Angus Webb ◽  
Michael R. Grace

Salinity is a major problem in many regions of Australia, and is predicted to get considerably worse over the next 30–50 years. Most effort has focused on the terrestrial environment, and specifically on the loss of productive agricultural land. Increased salinity can also result in unwanted changes to aquatic ecosystems in rivers, streams and particularly wetlands.This paper first reviews the importance of assessing risks from salinity increases in a catchment context, and then introduces a disturbance–response conceptual model to assist with the understanding of such situations. Two factors are shown to be particularly important in assessing which freshwater systems will be most susceptible to increases in salinity—the location of the systems in the landscape, and the current ecological condition of the system. The resilience of an ecosystem to salinity disturbances is shown to be a useful concept which with further knowledge may be incorporated into risk-assessment approaches.The development of a new ecological risk assessment approach for assessing risks to aquatic systems in the Goulburn–Broken catchment from increases in salinity over the medium (20 years) and long (100 years) term is reported. The risks to the biota in Hughes Creek, a tributary of the Goulburn River, are assessed by using a probabilistic approach. Current salinity levels in the creek present a low risk to the biota.Finally, the paper addresses the challenge of making the ecological risk assessment method more quantitative by discussing the following two key aspects: how to better quantify the linkages between the key stressors and the biotic components, and how to better handle uncertainties.


Sign in / Sign up

Export Citation Format

Share Document