scholarly journals Immunophenotypic Characterization of Normal Bone Marrow Stem Cells

Author(s):  
Paula Laranjeira ◽  
Andreia Ribeiro ◽  
Sandrine Mendes ◽  
Ana Henriques ◽  
M. Luisa ◽  
...  
2014 ◽  
Vol 8 (1) ◽  
pp. 169-174 ◽  
Author(s):  
YING-SONG QIN ◽  
DAN-XIA BU ◽  
YING-YING CUI ◽  
XIANG-YU ZHANG

Stem Cells ◽  
1996 ◽  
Vol 14 (5) ◽  
pp. 533-547 ◽  
Author(s):  
Margaret E. Ruiz ◽  
John Freeman ◽  
John D. Bouhasin ◽  
Alan P. Knutsen ◽  
Mary J. C. Hendrix

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4430-4430
Author(s):  
Farzaneh Ashrafi ◽  
Fatemeh Nadali ◽  
Ardeshir Ghavamzadeh ◽  
Kamran Alimoghaddam ◽  
Shahrbano Rostami ◽  
...  

Abstract Abstract 4430 Background Nucleostemin (NS), a novel p53-binding protein has been shown essential for stem and cancer cell proliferation and implicated in oncogenesis. Nucleostemin expression had been shown in gastric cancer (SGC-7901) cells, human hepatocarcinoma (HepG2) cells, human cervical cancer (Hela) cells, human osteosarcoma (OS-732) cells. Aim This work designed to study the NS gene expression in bone marrow cells in acute promyelocytic leukemia (APL) patients and in normal bone marrow specimens. Materials &Methods We examined NS gene expression by Quantitative Real Time PCR in bone marrow specimens of 15 cases of APL patients, before treatment and in 4 bone marrow specimens of healthy donors of bone marrow transplantation. In the same samples of bone marrow aspiration morphology of smears was evaluated. Diagnosis of APL was based on morphology and positive PML/RARA in PCR. RT-PCR used to amplify the NS mRNA, and the GAPDH primer sets used for normalizing. For comparison of NS gene expreesion in 2 groups Mann-Whitney U test was used. Results 15 patients enrolled in this study, 11(73%) newly diagnosed APL and 4(27%) relapsed cases. Mean age of patients was 28.67±9.56 year. NS gene expressed in all bone marrow samples of APL patients. NS gene expressed in normal bone marrow specimens too. NS gene expression in bone marrow of APL patients was significantly higher than normal bone marrows(p value =0.002) Fig 1. There was no significant difference in NS gene expression between newly diagnosed and relapsed APL cases. Discussion According to the results of this study it seems that NS gene expressed in normal marrow. NS expression in adult bone marrow hematopoietic stem cells had been reported in previous reports and it had been shown that NS does not express in granulocytes and B lymphocytes. It seems that stem cells and proliferating cells in the normal marrow are the source of NS expression detected in normal marrow. NS expreesion in bone marrow of APL patients was significantly higher than normal marrow. In these patients before treatment marrow is replaced by undifferentiated blasts and promyelocytes. We concluded that NS expression in these cells were high. It had been shown that NS down regulation may lead to cell cycle exit. High expression of NS in APL patients can be used in future researches for finding new targeted therapies in this disease. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 208 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Stefania Raimondo ◽  
Claudia Penna ◽  
Pasquale Pagliaro ◽  
Stefano Geuna

Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3596-3606 ◽  
Author(s):  
Troy D. Randall ◽  
Irving L. Weissman

Abstract A significant fraction of hematopoietic stem cells (HSCs) have been shown to be resistant to the effects of cytotoxic agents such as 5-fluorouracil (5-FU), which is thought to eliminate many of the rapidly dividing, more committed progenitors in the bone marrow and to provide a relatively enriched population of the most primitive hematopoietic progenitor cells. Although differences between 5-FU–enriched progenitor populations and those from normal bone marrow have been described, it remained unclear if these differences reflected characteristics of the most primitive stem cells that were revealed by 5-FU, or if there were changes in the stem-cell population itself. Here, we have examined some of the properties of the stem cells in the bone marrow before and after 5-FU treatment and have defined several activation-related changes in the stem-cell population. We found that long-term reconstituting stem cells decrease their expression of the growth factor receptor c-kit by 10-fold and increase their expression of the integrin Mac-1 (CD11b). These changes begin as early as 24 hours after 5-FU treatment and are most pronounced within 2 to 3 days. This activated phenotype of HSCs isolated from 5-FU–treated mice is similar to the phenotype of stem cells found in the fetal liver and to the phenotype of transiently repopulating progenitors in normal bone marrow. We found that cell cycle is induced concomitantly with these physical changes, and within 2 days as many as 29% of the stem-cell population is in the S/G2/M phases of the cell cycle. Furthermore, when examined at a clonal level, we found that 5-FU did not appear to eliminate many of the transient, multipotent progenitors from the bone marrow that were found to be copurified with long-term repopulating, activated stem cells. These results demonstrate the sensitivity of the hematopoietic system to changes in its homeostasis and correlate the expression of several important surface molecules with the activation state of HSCs.


Author(s):  
Janos Kanczler ◽  
Rahul S. Tare ◽  
Patrick Stumpf ◽  
Timothy J. Noble ◽  
Cameron Black ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document