scholarly journals Rotors on Active Magnetic Bearings: Modeling and Control Techniques

Author(s):  
Andrea Tonoli ◽  
Angelo Bonfitto ◽  
Mario Silvagni ◽  
Lester D.
Author(s):  
Takuya Nomoto ◽  
Daisuke Hunakoshi ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper presents a new modeling method and a control system design procedure for a flexible rotor with many elastic modes using active magnetic bearings. The purpose of our research is to let the rotor rotate passing over the 1st and the 2nd critical speeds caused by flexible modes. To achieve this, it is necessary to control motion and vibration of the flexible rotor simultaneously. The new modeling method named as Extended Reduced Order Physical Model is presented to express its motion and vibration uniformly. By using transfer function of flexible rotor-Active Magnetic Bearings system, we designed a Local Jerk Feedback Control system and conducted stability discrimination with root locus. In order to evaluate this modeling and control method, levitation experimentation is conducted.


Author(s):  
Yuichi Nakajima ◽  
Takahito Sagane ◽  
Hiroshi Tajima ◽  
Toru Watanabe ◽  
Kazuto Seto

This paper proposes a new modeling technique and control system design for flexible rotors using active magnetic bearings (AMB) to pass through many critical speeds and fulfill high-speed rotation. To achieve this purpose, it is necessary to control not only motion but also many modes of bending vibration. For the purpose, an extended reduced order physical model that is able to express simultaneously the motion and bending vibration of the flexible rotor, is proposed. Furthermore, a new controller combined PID with LQ control is adapted to control the flexible rotor. Effectiveness of the proposed modeling and control approach for the flexible rotor is verified through simulations and experiments.


2016 ◽  
Vol 1 (1) ◽  
pp. 12
Author(s):  
Madiha Maamir ◽  
Achour Betka ◽  
Hania Aboub

This paper describes the  modeling and control of a hybrid source consisting of PV generator (as  main  source)  along  with  a  battery (as  an  auxiliary source)  and a dc-load are connected through power converters and a dc-link. The main objective of this paper is to design a power manager to control effectively the power of the different sources. To test the effectiveness of the different control techniques involved, simulation results are plotted and commented.


2014 ◽  
Vol 541-542 ◽  
pp. 317-323
Author(s):  
R. Karthikeyan ◽  
R.K. Ganesh Ram ◽  
V. Kalaichelvi

True stress-strain data is obtained for 6061Al/ 10% SiC composites by hot compression test. Mathematical models for % volume of recrystallization and diameter of the recrystallized grains are developed with process parameters such as strain, strain rate and temperature. These models are applied for optimization of the grain size and % volume of recrystallization. An attempt has been made to control microstructure evolution during hot deformation using fuzzy logic controller through simulation in MATLAB software. The fuzzy logic controller parameters are tuned using genetic algorithm.


Sign in / Sign up

Export Citation Format

Share Document