scholarly journals Modeling Aspects of Nonlinear Energy Harvesting for Increased Bandwidth

Author(s):  
Marcus Neubauer ◽  
Jens Twiefel ◽  
Henrik Westermann ◽  
Jorg Wallaschek
2016 ◽  
Vol 10 (3) ◽  
pp. 147 ◽  
Author(s):  
Rodrigo Tumolin Rocha ◽  
Jose Manoel Balthazar ◽  
Angelo Marcelo Tusset ◽  
Vinicius Piccirillo ◽  
Jorge Luis Palacios Felix

Author(s):  
Sumin Seong ◽  
Christopher Mullen ◽  
Soobum Lee

This paper presents reliability-based design optimization (RBDO) and experimental validation of the purely mechanical nonlinear vibration energy harvester we recently proposed. A bi-stable characteristic was embodied with a pre-stressed curved cantilever substrate on which piezoelectric patches were laminated. The curved cantilever can be simply manufactured by clamping multiple beams with different lengths or by connecting two ends of the cantilever using a coil spring. When vibrating, the inertia of the tip mass activates the curved cantilever to cause snap-through buckling and makes the nature of vibration switch between two equilibrium positions. The reliability-based design optimization study for maximization of power density and broadband energy harvesting performance is performed. The benefit of the proposed design in terms of excellent reliability, design compactness, and ease of implementation is discussed. The prototype is fabricated based on the optimal design result and energy harvesting performance between the linear and nonlinear energy harvesters is compared. The excellent broadband characteristic of the purely mechanical harvester will be validated.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3294 ◽  
Author(s):  
Shidang Li ◽  
Chunguo Li ◽  
Weiqiang Tan ◽  
Baofeng Ji ◽  
Luxi Yang

Vehicle to everything (V2X) has been deemed a promising technology due to its potential to achieve traffic safety and efficiency. This paper considers a V2X downlink system with a simultaneous wireless information and power transfer (SWIPT) system where the base station not only conveys data and energy to two types of wireless vehicular receivers, such as one hybrid power-splitting vehicular receiver, and multiple energy vehicular receivers, but also prevents information from being intercepted by the potential eavesdroppers (idle energy vehicular receivers). Both the base station and the energy vehicular receivers are equipped with multiple antennas, whereas the information vehicular receiver is equipped with a single antenna. In particular, the imperfect channel state information (CSI) and the practical nonlinear energy harvesting (EH) model are taken into account. The non-convex optimization problem is formulated to maximize the minimum harvested energy power among the energy vehicular receivers satisfying the lowest harvested energy power threshold at the information vehicular receiver and secure vehicular communication requirements. In light of the intractability of the optimization problem, the semidefinite relaxation (SDR) technique and variable substitutions are applied, and the optimal solution is proven to be tight. A number of results demonstrate that the proposed robust secure beamforming scheme has better performance than other schemes.


2019 ◽  
Vol 442 ◽  
pp. 167-182 ◽  
Author(s):  
G. Thomson ◽  
Z. Lai ◽  
D.V. Val ◽  
D. Yurchenko

2018 ◽  
Vol 30 (2) ◽  
pp. 213-227 ◽  
Author(s):  
Wen Cai ◽  
Ryan L Harne

In recent years, great advances in understanding the opportunities for nonlinear vibration energy harvesting systems have been achieved giving attention to either the structural or electrical subsystems. Yet, a notable disconnect appears in the knowledge on optimal means to integrate nonlinear energy harvesting structures with effective nonlinear rectifying and power management circuits for practical applications. Motivated to fill this knowledge gap, this research employs impedance principles to investigate power optimization strategies for a nonlinear vibration energy harvester interfaced with a bridge rectifier and a buck-boost converter. The frequency and amplitude dependence of the internal impedance of the harvester structure challenges the conventional impedance matching concepts. Instead, a system-level optimization strategy is established and validated through simulations and experiments. Through careful studies, the means to optimize the electrical power with partial information of the electrical load is revealed and verified in comparison to the full analysis. These results suggest that future study and implementation of optimal nonlinear energy harvesting systems may find effective guidance through power flow concepts built on linear theories despite the presence of nonlinearities in structures and circuits.


Sign in / Sign up

Export Citation Format

Share Document