scholarly journals Electrical power management and optimization with nonlinear energy harvesting structures

2018 ◽  
Vol 30 (2) ◽  
pp. 213-227 ◽  
Author(s):  
Wen Cai ◽  
Ryan L Harne

In recent years, great advances in understanding the opportunities for nonlinear vibration energy harvesting systems have been achieved giving attention to either the structural or electrical subsystems. Yet, a notable disconnect appears in the knowledge on optimal means to integrate nonlinear energy harvesting structures with effective nonlinear rectifying and power management circuits for practical applications. Motivated to fill this knowledge gap, this research employs impedance principles to investigate power optimization strategies for a nonlinear vibration energy harvester interfaced with a bridge rectifier and a buck-boost converter. The frequency and amplitude dependence of the internal impedance of the harvester structure challenges the conventional impedance matching concepts. Instead, a system-level optimization strategy is established and validated through simulations and experiments. Through careful studies, the means to optimize the electrical power with partial information of the electrical load is revealed and verified in comparison to the full analysis. These results suggest that future study and implementation of optimal nonlinear energy harvesting systems may find effective guidance through power flow concepts built on linear theories despite the presence of nonlinearities in structures and circuits.

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3776 ◽  
Author(s):  
Juan Carlos Rodriguez ◽  
Valeria Nico ◽  
Jeff Punch

Electromagnetic Vibration Energy Harvesting (EM-VEH) is an attractive alternative to batteries as a power source for wireless sensor nodes that enable intelligence at the edge of the Internet of Things (IoT). Industrial environments in particular offer an abundance of available kinetic energy, in the form of machinery vibrations that can be converted into electrical power through energy harvesting techniques. These ambient vibrations are generally broadband, and multi-modal harvesting configurations can be exploited to improve the mechanical-to-electrical energy conversion. However, the additional challenge of energy conditioning (AC-to-DC conversion) to make the harvested energy useful brings into question what specific type of performance is to be expected in a real industrial application. This paper reports the operation of two practical IoT sensor nodes, continuously powered by the vibrations of a standard industrial compressor, using a multi-modal EM-VEH device, integrated with customised power management. The results show that the device and the power management circuit provide sufficient energy to receive and transmit data at intervals of less than one minute with an overall efficiency of about 30%. Descriptions of the system, test-bench, and the measured outcomes are presented.


Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 44 ◽  
Author(s):  
Mario Mösch ◽  
Gerhard Fischerauer

Self-adaptive vibration energy harvesting systems vary their resonance frequency automatically to better exploit changing environmental conditions. The energy required for the adjustment is taken from the energy storage of the harvester module. The energy gained by an adjustment step has to exceed the energy expended on it to justify the adjustment. A smart self-adaptive system takes this into account and operates in a manner that maximizes the energy output. This paper presents a theory for the optimal operation of a vibration energy harvester with a passive resonance-frequency adjustment mechanism (one that only requires energy for the adjustment steps proper, but not during the hold phases between the steps). Several vibration scenarios are considered to derive a general guideline. It is shown that there exist conditions under which a narrowing of the adjustment bandwidth improves the system characteristics. The theory is applied to a self-adaptive energy harvesting system based on electromagnetic transduction with narrowband resonators. It is demonstrated that the novel optimum mode of operation increases the energy output by a factor of 3.6.


Author(s):  
Jinki Kim ◽  
Patrick Dorin ◽  
K. W. Wang

Many common environmental vibration sources exhibit low and broad frequency spectra. In order to exploit such excitations, energy harvesting architectures utilizing nonlinearity, especially bistability, have been widely studied since the energetic interwell oscillations between their stable equilibria can provide enhanced power harvesting capability over a wider bandwidth compared to the linear counterpart. However, one of the limitations of these nonlinear architectures is that the interwell oscillation regime may not be activated for a low excitation level that is not strong enough to overcome the potential energy barrier, thus resulting in low amplitude intrawell response which provides poor energy harvesting performance. While the strategic integration of bistability and additional dynamic elements has shown potential to improve broadband energy harvesting performance by lowering the potential barrier, there is a clear opportunity to further improve the energy harvesting performance by extracting electrical power from the kinetic energy in the additional element that is induced when the potential barrier is lowered. To explore this opportunity and advance the state of the art, this research develops a novel hybrid bistable vibration energy harvesting system with a passive mechanism that not only adaptively lowers the potential energy barrier level to improve broadband performance but also exploits additional means to capture more usable electrical power. The proposed harvester is comprised of a cantilever beam with repulsive magnets, one attached at the free end and the other attached to a linear spring that is axially aligned with the cantilever (a spring-loaded magnet oscillator). This new approach capitalizes on the adaptive bistable potential that is passively realized by the spring-loaded magnet oscillator, which lowers the double-well potential energy barrier thereby facilitating the interwell oscillations of the cantilever across a broad range of excitation conditions, especially for low excitation amplitudes and frequencies. The interwell oscillation of the cantilever beam enhances not only the piezoelectric energy harvesting from the beam but also the electromagnetic energy harvesting from the spring-loaded magnet oscillator by inducing large amplitude vibrations of the magnet oscillator. Numerical investigations found that the proposed architecture yields significantly enhanced energy harvesting performance compared to the conventional bistable harvester with fixed magnet.


2012 ◽  
Vol 12 (6) ◽  
pp. 954-959 ◽  
Author(s):  
Sang-Hun Song ◽  
Sungmuk Kang ◽  
Kyungjin Park ◽  
Seunghwan Shin ◽  
Hoseong Kim

Author(s):  
Luã Guedes Costa ◽  
Luciana Loureiro da Silva Monteiro ◽  
Pedro Manuel Calas Lopes Pacheco ◽  
Marcelo Amorim Savi

Piezoelectric materials exhibit electromechanical coupling properties and have been gained importance over the last few decades due to their broad range of applications. Vibration-based energy harvesting systems have been proposed using the direct piezoelectric effect by converting mechanical into electrical energy. Although the great relevance of these systems, performance enhancement strategies are essential to improve the applicability of these system and have been studied substantially. This work addresses a numerical investigation of the influence of cubic polynomial nonlinearities in energy harvesting systems considering a bistable structure subjected to harmonic excitation. A deep parametric analysis is carried out employing nonlinear dynamics tools. Results show complex dynamical behaviors associated with the trigger of inter-well motion. Electrical power output and efficiency are monitored in order to evaluate the configurations associated with best system performances.


Sign in / Sign up

Export Citation Format

Share Document